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Abstract. The analysis shows that there is no intrinsic oscillation in the relation between frequency 
and length of words. The rise of oscillation is caused by using moving averages for smoothing the 
extremely dispersed data. 

Keywords: Frequency-length relation, oscillation 

The relationship between the frequency of a word and its length has repeatedly been the 
object of linguistics studies since Zipf’s (1932, 1935) corresponding statements. Subsequent 
to his hypothesis, stating that the length of a word stands in an inverse relationship to its 
frequency, many studies have analyzed this problem, based either on texts (or parts of texts), 
frequency lists, or corpus analyses. 

Different models have been suggested to formally describe this particular relationship. In 
his comprehensive study on the German LIMAS corpus, composed of ca. 500 texts (or parts 
of texts, respectively), and comprising about one million words, Köhler (1986) tested if the 
so-called power law, implying the relationship y = ax-b, is apt to adequately describe the 
dependency of word length on word frequency. 

As a result of his statistical analysis, Köhler (1986: 137) concluded that his initial hypo-
thesis must not be rejected; in a follow-up study by Zörnig, Köhler, and Brinkmöller (1990: 
25), the authors repeat this interpretation, speaking of “a highly positive result”. Their inter-
pretation was based on an analysis of variance, yielding F1,158 = 105 (p < 0.001), (F0.01 = 6.8). 
Meanwhile, however, it is a well-known fact, that as the sample size increases, the F-test is 
problematic to reliably interpret results achieved by it. Therefore, it seems to be more reason-
able to (at least additionally) evaluate the goodness of regression models by reference to the 
determination coefficient R², although the latter, too, of course, is not free of deficiencies (cf. 
Grotjahn 1992).  

In fact, a re-analysis of Köhler’s data shows that his initial fit is far from being good, 
which is corroborated by the determination coefficient of R² = 0.24. This poor fit is clearly 
illustrated in Fig. 1, taken from Köhler (1986: 138). 

As a matter of fact, Köhler and his co-authors noticed that, irrespective of the positive F-
value, the fit of the exponential function was far from being satisfying. Therefore Köhler 
(1986: 137) concluded that, given the deviations of the empirical data from the theoretical 
curve are random, it should be possible to arrive at better results, if one smoothes the data by 
way of moving averages.  

 

                                                 
1 Address correspondence to: Peter Grzybek, Institut für Slawistik, Universität Graz, Merangasse. 70, A-8010 
Graz. E-mail: grzybek@uni-graz.at 
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Fig. 1. Corpus data representing the dependence of word length (L)  

on word frequency (F); cf. Köhler (1986: 138) 
 

Köhler did not systematically pursue this question, but re-analyzing his data, one can 
indeed show that with an increase of the intervals, the fit of the exponential function becomes 
stepwise better: 

 

smoothing interval R² 

none 0.24 

20 0.54 

50 0.77 

100 0.92 

 

Smoothing by way of moving averages, thus seems to be an effective procedure. However, 
Köhler was not so much interested in the fact of the gradually improving fit, as he was 
surprised by an oscillating curve around the theoretical hyperbolic function line: This is to say 
that, after using moving averages with intervals of 20, 50 and 100, a peculiar oscillation 
appeared which seemed to be very regular (cf. Fig. 2).  

Köhler (1986) himself and, in the subsequent detail study devoted to this particular prob-
lem, Zörnig, Köhler and Brinkmöller (1990), tried to capture the course of the data by adding 
further power components. They thus first obtained  
 
(1) L = aFb + cFd 
 
and then the rather complex function 
 
(2) 0( ) sin( )m F Fb dL aF cF ke Fα−= + + , 

which captured the oscillation in a convincing way, as can be seen in Fig. 3. 
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            Fig. 2. Smoothing the above data (cf. Fig 1) by moving averages  

                   in intervals of 50; cf. Köhler (1986: 141) 
 

 
Fig. 3. Observed and computed mean lengths (Zörnig et al. 1990: 37) 

 

What remained open, however, was a linguistic interpretation of this phenomenon, which 
Zörnig, Köhler, and Brinkmöller (1990: 39) left for “future research”. Taking into account the 
complexity of formula (2), it is not really astonishing that this problem has remained unsolved 
until today. 

In a recent study on the dependence of word length on word frequency, Strauss, Grzybek, 
and Altmann (2003) have examined individual texts, comparing the results to those obtained 
on the basis of text mixtures. In the tail of the dependence, there were many frequency classes 
without records, and the recorded ones contained a very small number of cases (mostly 1), 
thus causing a strong dispersion. Instead of smoothing the data by moving averages, they 
pooled low-frequency classes in order to obtain more stabile data. By pooling the data in such 
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a way that each frequency class contained at least 10 records, the authors obtained an 
unequivocal corroboration of the relationship in all cases (for texts from 10 different 
languages) 

 
(3) 1bL aF −= +  

where L = mean length, F = frequency, a and b are coefficients, and the constant 1 is the 
asymptote of the function (since word length was measured in terms of syllable numbers). 
Occurring non-syllabic words (such as, e.g., the Russian prepositions к, с, в), were considered 
as proclitics. It was not necessary to take oscillation into account, the fitting quite obviously 
displayed random residuals.  

Irrespective of the satisfying results, it is just the observation of the lack of oscillation 
which again rises the question of its presence in Köhler’s study; retrospectively, the problem 
pointed out by him remains unanswered till today, and it is not clear whether oscillation arose  

 
(a) due to data mixing, ultimately inherent in any corpus, or  
(b) as a result of an increasing sample size, or  
(c) whether it was an attribute of the specific data.2 
 

In the present study, an attempt shall be undertaken to offer a reason for the rise of oscillation. 
For our purposes, and by way of a working definition, oscillation can be assumed to be 
present, if the sequences of neighbouring observed data cross the theoretical curve either too 
frequently or too rarely. There is an interval within which the number of crossings – or the 
number of runs above and below the curve – can be considered to be random. We are not 
concerned with a time series, here, but with a sequence of numbers, capturing the length-
frequency relations of words, which are ordered according to their increasing frequency. 
Since only low frequencies have a sufficient number of records, while higher frequencies 
have either none or very few records, the results for higher frequencies are insufficiently 
representative – therefore, great fluctuation is to be expected in this domain. 

Fig. 4 illustrates the frequency-length dependence for the complete text of Puškin’s verse 
novel Evgenij Onegin. Interpreting the curve, one can say that, generally speaking, high-fre-
quency words tend to be shorter. This tendency holds true only on the average, however: 
whereas the curve is relatively regular at the beginning, one can observe rather irregular 
instabilities with the higher frequencies.  

The reason for these instabilities is most likely the fact that in this particular part at the 
curve’s tail, individual frequent words tend to have not more but one, two or three syllables. 
Since these words represent frequency classes in which they may occur alone, great 
dispersion results are to be expected exactly here. In other words: most probably, the greater 
dispersion is likely to be due to the insufficient number of records for these data points. 
Generalizing this observation, it would seem reasonable to assume that the exact part of the 
curve, where the dispersion becomes greater, depends on the distances between the repre-
sented classes, or on the frequencies of these classes (or both), which, in turn, might be related 
to text length (or corpus structure). 

The problem at stake is obvious: if one wants to prove the validity of the law postulated 
by Zipf, one has three options in dealing with the data and their theoretical modelling: 

 
 

                                                 
2  In another follow-up-study, Hammerl (1990) tested Polish corpus data with regard to the previously observed 

phenomenon of oscillation, but he did not find any.  
 



Oscillation in the frequency-length relationship 101

$

$

$
$$

$

$$
$
$
$

$$
$

$

$

$

$

$
$
$

$

$

$$
$

$

$

$

$

$$

$

$

$$

$

$

$

$$

$

$

$

$$

$

$

$

$$$$$$$$$$

$

$

$

$

$$$$$$$

Frequency
0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

Le
ng

th
 (i

n 
sy

lla
bl

es
)

 
Fig. 4. The frequency-length relationship in Evgenij Onegin 

 

(a) one tries to derive a curve capturing this chaotic movement, or  
(b) one smoothes the data to obtain a plain course, or 
(c) one smoothes the data and tries to capture also such complications (such as oscillation) 

which may arise during the process of smoothing. 
 

It is obvious, that no one would ever try to go the first way, because data of this kind are 
extremely dispersing. Therefore, some kind of smoothing is necessary, since fitting curve (3) 
to the empirical data; without any smoothing, yields a very poor result (in this case 
a = 2.1682, b = -0,4524; R² = 0.49). 

Now, as to the concrete manner of smoothing, different options are available: whereas 
Strauss, Grzybek and Altmann (2003) pooled the data and corroborated (3) in every case, 
another way was chosen by Köhler (1986) and Zörnig, Köhler, Brinkmöller (1990), who used 
moving averages and obtained the oscillating curve described above; ultimately succeeded in 
modelling this oscillation (see above), they had to leave open the question of its rise.  

It seems most reasonable that, in one way or another, the concrete manner of smoothing 
is related to the phenomenon; this is not to say that oscillation necessarily is a consequence of 
smoothing by moving averages; yet, this might be the case in combination with a particular 
data structure. In an attempt to test this assumption,  we will try to reproduce Köhler’s finding 
for Puškin’s Evgenij Onegin, and to “artificially” generate the oscillating phenomenon.  

Let us start by replicating the smoothing method applied by Strauss, Grzybek, and 
Altmann (2003). This is to say, we first have to compute the mean length of words occurring 
exactly x times. For the sake of data homogeneity, we will initially concentrate on the first 
chapter, only; the values thus obtained are represented in Table 1 (see below). We then have 
to pool the data as described above, i.e. in such a way that each frequency class is based on at 
least ten records;3 the resulting values of this pooling procedure are represented in Table 1. 

As can be seen from Table 1, smoothing by way of pooling the classes, as described 
above, yields a very good result of R2 = 0.96, which is graphically represented in Fig. 5. 

                                                 
3  If the present results slightly differ from those presented by Strauss, Grzybek, and Altmann (2003), the 

reason for this is, first, that classes are pooled here “bottom-up”, whereas they were pooled “top-down” in the 
article mentioned; and second, that the means obtained here are weighted means both for frequency and 
length, whereas unweighted means were calculated in the previous study. 
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Table 1 
Fitting (3) to the data of Evgenij Onegin: smoothing by pooling 

 
F L L* 
1 2.6595 2.7123 
2 2.1256 1.9894 
3 1.7800 1.7178 
4 1.4800 1.5716 
5 1.3750 1.4791 

6.46 1.5385 1.3911 
9.40 1.1333 1.2907 
15.10 1.2000 1.1998 
45.50 1.1000 1.0835 
a = 1.7123,   b = -0.7914, R² = 0.96 
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Fig. 5. Observed and computed mean lengths in Evgenij Onegin (ch. I) 

 

Based on these procedures of the previous work, we may now focus the question of 
oscillation and extend our ruminations. Theoretically speaking, if a fitting is satisfactory, then 
not only small sums of squared deviations should be attained, but additionally, the empirical 
values should display random fluctuations around the theoretical curve. In other words: in this 
case, there must be neither too many nor too few runs of values on both sides of the curve. If 
this should still be the case, then the data either contain an intrinsic oscillation (if there are too 
many runs) or they display a slow wavelike motion (if there are too few runs). The oscillation 
must be caught by superposed curves since a simple curve cannot capture it adequately. 
However, if the wavelike motion arises by manipulation of data, it is not real and a simple 
curve is sufficient to capture it.  

We can easily test this by applying the theory of runs (cf. Grotjahn 1979: 143ff., 1980). 
The basic idea, here, would be to test the number of sequences above and below the theo-
retical curve; in our case, it would be sufficient to know, if there are two few sequences 
(runs). In order to test this statistically, we need 
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n1 number of data points above the theoretical curve (+) 
n2 number of data points below the theoretical curve (–) 

r1 number of (+)-sequences 

r2 number of (–)-sequences 

n = n1 + n2 

r  = r1 + r2 

 

Since we are interested in the question if there are too few runs, we test the one-sided 
hypothesis. As is well known, the approximation to the normal distribution may be used, for 
larger n (n > 30). Since the number of runs does not exceed 30, however, we have to calculate 
the exact (cumulated) probabilities which can also be taken from existing tables. 

In order to show the rise of the wave, we first test the number of runs based on the data 
given in Table 2.  
 

Table 2 
Fitting (3) to the raw data in Evgenij Onegin (Chapter I) 

 

F L L*  F L L*  F L L*  
1 2.66 2.70 – 10 1 1.28 – 21 2 1.16 + 

2 2.13 1.99 + 11 1 1.26 – 24 1 1.14 – 

3 1.78 1.72 + 12 3 1.24 + 25 1 1.14  

4 1.42 1.57 – 13 1 1.23 – 32 1 1.11  

5 1.29 1.48 – 14 1 1.21 – 38 1 1.10  

6 1.43 1.42 + 15 1 1.20 – 45 1 1.09  

7 1.43 1.37 + 17 1 1.18 – 49 1 1.08  

8 1.17 1.33 – 19 1 1.17 – 68 1 1.06  

9 1.00 1.30 – 20 1 1.16 – 155 1 1.03  

a = –0.7846,   b = 1.6977,   R² = 0.43 
 

According to the description above, the positive deviations, i.e., those values which lie 
above the theoretical curve, are marked by (+), the negative ones, i.e., those that lie below it, 
by (–). Since in the whole tail, the theoretical curve lies above the empirical data, we cut off 
the both after the first negative sign of the last run; the number of runs thus remains constant, 
but the number of elements decreases thus requiring more extreme test results. As can be 
seen, we have  
 

n1 = 6 (6 times “+”) r1 = 4 (4 runs of “+”) 

n2 = 14 (14 times “–“) r2 = 5 (5 runs of “–“) 

n = n1 + n2 = 20 r1 + r2 = 9 
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Since the number of runs is relatively small (r < 30), we have to calculate the exact 
cumulative probability, and we thus obtain P(R ≤ r) = 0.5204, which is not significant, of 
course: this is to say that the number of runs does not differ from the expected one.  

Now, let us smooth the data using moving averages with larger intervals. Table 3, re-
presents the results of smoothing with moving averages on the basis of different intervals. In 
the following tables interval 1 means no smoothing. 
 

Table 3 
Building moving averages and testing the runs 

 
Interval of 
the moving 

average n1 n2 n r1 r2 r P(R < r) 
1 14 6 20 5 4 9 0.5204 
2 15 5 20 4 3 7 0.2722 
3 14 6 20 3 2 5 0.0173 
4 12 8 20 3 2 5 0.0063 

 

It can clearly be seen that, with an increase of the intervals, the probability for oscillation to 
come into play soon rises. Figure 6 convincingly illustrates this tendency, juxtaposing the 
results for both manners of smoothing for the sake of comparison. 
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Fig. 6. Observed and computed mean lengths in Evgenij Onegin (ch. I) 

 

For the sake of generalisation, let us finally extend this procedure to a broader text basis. 
Table 4 represents the results for each of the eight chapters of Evgenij Onegin; in order to 
eventually compare the exact results to those obtained by approximation to the normal dis-
tribution, both values are presented in parallel. The comparison of the smoothed values with 
the theoretical curve yields the following results (see Table 4): 
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Table 4 
Test for the number of runs with different smoothing intervals 

(Evgenij Onegin, chs. I–VIII) 
 

 N Interval n1 n2 n r1 r2 r P(R < r) 
1 15 5 20 5 4 9 0.7417 
2 14 6 20 4 3 7 0.1514 EO 1 3086 
3 14 6 20 3 2 5 0.0173 
1 12 7 19 5 4 9 0.4276 
2 12 7 19 5 4 9 0.4276 
3 13 6 19 3 2 5 0.0217 

EO 2 2235 

4 11 8 19 2 1 3 0.0003 
1 9 7 16 3 2 5 0.0350 
2 10 6 16 3 2 5 0.0470 EO 3 2702 
3 12 4 16 2 1 3 0.0088 
1 7 6 13 3 2 5 0.1212 
2 7 6 13 3 2 5 0.1212 
3 8 5 13 3 2 5 0.1515 

EO 4 2441 

4 10 3 13 2 1 3 0.0455 
1 10 6 16 6 5 11 0.9580 
2 10 6 16 3 2 5 0.0470 
3 9 7 16 3 2 5 0.0350 
4 11 5 16 3 2 5 0.0769 

EO 5 2310 

5 11 5 16 2 1 3 0.0037 
1 10 5 15 5 4 9 0.8741 
2 9 6 15 4 3 7 0.3427 
3 10 5 15 4 3 7 0.4545 
4 10 5 15 3 2 5 0.0949 

EO 6 2471 

5 9 5 14 2 1 3 0.0070 
1 14 8 22 6 5 11 0.5573 
2 14 8 22 4 3 7 0.0408 
3 13 9 22 4 3 7 0.0294 

EO 7 2922 

4 15 7 22 3 2 5 0.0055 
1 14 10 24 5 4 9 0.0857 
2 14 10 24 5 4 9 0.0857 
3 17 7 24 4 3 7 0.0450 

EO 8 3217 

4 19 5 24 3 2 5 0.0209 
 

As can clearly be seen, in most cases, intervals of three or four radically change the situation: 
It is almost self-evident that values of P < 0.05 signalize significantly few runs, i.e., the rise of 
a slow wave motion (with a one-sided hypothesis). As a matter of fact, by prolonging the 
intervals, one obtains ever longer waves, what need not be demonstrated in detail, here. 
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Additionally, in order to at least raise the questions of text length or data mixture, Table 5 
represents the results for a successive cumulation of chapters I-VIII of Evgenij Onegin. 
 

Table 5 
Test for the number of runs with different smoothing intervals 

(Evgenij Onegin, cumulated chs. I–VIII) 
 

 N Interval n1 n2 n r1 r2 r P(R < r) 
1 17 13 30 10 9 19 0.9238 
2 17 13 30 7 6 13 0.1980 
3 17 13 30 7 6 13 0.1980 

EO 1-2 5321

4 18 12 30 5 4 9 0.0106 
1 21 15 36 11 10 21 0.8521 
2 21 15 36 7 6 13 0.0404 
3 25 11 36 6 5 11 0.0306 

EO 1-3 8023

4 27 9 36 4 3 7 0.0012 
1 20 22 42 10 9 19 0.2204 

EO 1-4 10464
2 22 20 42 7 6 13 0.0036 
1 27 21 48 14 13 27 0.8026 
2 29 19 48 10 9 19 0.0872 EO 1-5 12774
3 31 17 48 7 6 13 0.0013 
1 30 25 55 14 13 27 0.4153 

EO 1-6 15245
2 27 28 55 10 9 19 0.0067 

EO 1-7 18167 1 35 28 63 10 9 19 0.0005 
1 33 30 63 13 12 25 0.0383 

EO-tot 21401
2 32 31 63 6 5 11 0.0000 

 

Again, one clearly sees the impact of smoothing by moving averages on the rise of oscillation; 
additionally, it can easily be observed that oscillation is more likely to arise for the larger, 
cumulated samples. If this is due to sample size, or data mixture, or to a combination of both 
factors, will have to be the topic of a detail study particularly devoted to this problem.  

Summarizing we can state that the relation between frequency and length of words does 
not contain an intrinsic oscillation based on a linguistic cause, as has previously been 
suspected. It is simply the consequence of a special kind of smoothing.  
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