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1. Historical roots

The study of word length has an almost 150-year long history: it was on August

18, 1851, when Augustus de Morgan, the well-known English mathematician

and logician (1806–1871), in a letter to a friend of his, brought forth the idea of

studying word length as an indicator of individual style, and as a possible factor

in determining authorship. Specifically, de Morgan concentrated on the number

of letters per word and suspected that the average length of words in differ-

ent Epistles by St. Paul might shed some light on the question of authorship;

generalizing his ideas, he assumed that the average word lengths in two texts,

written by one and the same author, though on different subjects, should be

more similar to each other than in two texts written by two different individuals

on one and the same subject (cf. Lord 1958).

Some decades later, Thomas Corwin Mendenhall (1841–1924), an Ameri-

can physicist and metereologist, provided the first empirical evidence in favor

of de Morgan’s assumptions. In two subsequent studies, Mendenhall (1887,

1901) elaborated on de Morgan’s ideas, suggesting that in addition to analy-

ses “based simply on mean word-length” (1887: 239), one should attempt to

graphically exhibit the peculiarities of style in composition: in order to arrive

at such graphics, Mendenhall counted the frequency with which words of a

given length occur in 1000-word samples from different authors, among them

Francis Bacon, Charles Dickens, William M. Thackerey, and John Stuart Mill.

Mendenhall’s (1887: 241) ultimate aim was the description of the “normal curve

of the writer”, as he called it:

[. . . ] it is proposed to analyze a composition by forming what may be called a

’word spectrum’ or ’characteristic curve’, which shall be a graphic representation

of the arrangement of words according to their length and to the relative frequency

of their occurrence.
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Figure 2.1, taken from Mendenhall (1887: 237), illustrates, by way of an

example, Mendenhall’s achievements, showing the result of two 1000-word

samples from Dickens’ Oliver Twist: quite convincingly, the two curves con-

verge to an astonishing degree.

Figure 2.1: Word Length Frequencies in Dickens’ Oliver Twist

(Mendenhall 1887)

Mendenhall (1887: 244) clearly saw the possibility of further applications of

his approach:

It is hardly necessary to say that the method is not necessarily confined to the

analysis of a composition by means of its mean word-length: it may equally well

be applied to the study of syllables, of words in sentences, and in various other

ways.

Still, Mendenhall concentrated solely on word length, as he did in his follow-

up study of 1901, when he continued his earlier line of research, extending it also

to include selected passages from French, German, Italian, Latin, and Spanish

texts.

As compared to the mere study of mean length, Mendenhall’s work meant an

enormous step forward in the study of word length, since we know that a given

mean may be achieved on the basis of quite different frequency distributions.

In fact, what Mendenhall basically did, was what would nowadays rather be

called a frequency analysis, or frequency distribution analysis. It should be

mentioned, therefore, that the mathematics of the comparison of frequency

distributions was very little understood in Mendenhall’s time. He personally

was mainly attracted to the frequency distribution technique by its resemblance

to spectroscopic analysis.

Figure 2.2, taken from Mendenhall (1901: 104) illustrates the curves from

two passages by Bacon and Shakespeare. Quite characteristically, Mendenhall’s

conclusion was a suggestion to the reader: “The reader is at liberty to draw any

conclusions he pleases from this diagram.”
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Figure 2.2: Word Length Frequencies in Bacon’s and Shake-

speare’s Texts (Mendenhall 1901)

On the one hand, one may attribute this statement to the author’s ‘scientific

caution’, as Williams (1967: 89) put it, discussing Mendenhall’s work. On the

other hand, the desire for calculation of error or significance becomes obvious,

techniques not yet well developed in Mendenhall’s time.

Finally, there is another methodological flaw in Mendenhall’s work, which

has been pointed out by Williams (1976). Particularly as to the question of au-

thorship, Williams (1976: 208) emphasized that before discussing the possible

significance of the Shakespeare–Bacon and the Shakespeare–Marlowe contro-

versies, it is important to ask whether any differences, other than authorship,

were involved in the calculations. In fact, Williams correctly noted that the texts

written by Shakespeare and Marlowe (which Mendenhall found to be very sim-

ilar) were primarily written in blank verse, while all Bacon’s works were in

prose (and were clearly different). By way of additionally analyzing works by

Sir Philip Sidney (1554–1586), a poet of the Elizabethan Age, Williams (1976:

211) arrived at an important conclusion:

There is no doubt, as far as the criterion of word-length distribution is concerned,

that Sidney’s prose more closely resembles prose of Bacon than it does his own

verse, and that Sidney’s verse more closely resembles the verse plays of Shake-

speare than it does his own prose. On the other hand, the pattern of difference

between Shakespeare’s verse and Bacon’s prose is almost exactly comparable

with the difference between Sidney’s prose and his own verse.

Williams, too, did not submit his observations to statistical testing; yet, he

made one point very clear: word length need not, or not only, or perhaps not

even primarily, be characteristic of an individual author’s style; rather word

length, and word length frequencies, may be dependent on a number of other

factors, genre being one of them (cf. Grzybek et al. 2005, Kelih et al. 2005).

Coming back to Mendenhall, his approach should thus, from a contemporary

point of view, be submitted to cautious criticism in various aspects:
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(a) Word length is defined by the number of letters per word.– Still today, many

contemporary approaches (mainly in the domain of computer sciences),

measure word length in the number of letters per word, not paying due

attention to the arbitrariness of writing systems. Thus, the least one would

expect would be to count the number of sounds, or phonemes, per word;

as a matter of fact, it would seem much more reasonable to measure word

length in more immediate constituents of the word, such as syllables, or

morphemes. Yet, even today, there are no reliable systematic studies on

the influence of the measuring unit chosen, nor on possible interrelations

between them (and if they exist, they are likely to be extremely language-

specific).

(b) The frequency distribution of word length is studied on the basis of arbitrar-

ily chosen samples of 1000 words.– This procedure, too, is often applied,

still today. More often than not, the reason for this procedure is based on the

statistical assumption that, from a well-defined sample, one can, with an

equally well-defined degree of probability, make reliable inferences about

some totality, usually termed population. Yet, as has been repeatedly shown,

studies along this line do not pay attention to a text’s homogeneity (and

consequently, to data homogeneity). Now, for some linguistic questions,

samples of 1000 words may be homogeneous – for example, this seems to

be the case with letter frequencies (cf. Grzybek/Kelih/Altmann 2004). For

other questions, particularly those concerning word length, this does not

seem to be the case – here, any selection of text segments, as well as any

combination of different texts, turns out to be a “quasi text” destroying the

internal rules of textual self-regulation. The very same, of course, has to

be said about corpus analyses, since a corpus, from this point of view, is

nothing but a quasi text.

(c) Analyses and interpretations are made on a merely graphical basis.– As

has been said above, the most important drawback of this method is the

lack of objectivity: no procedure is provided to compare two frequency

distributions, be it the comparison of two empirical distributions, or the

comparison of an empirical distribution to a theoretical one.

(d) Similarities (homogeneities) and differences (heterogeneities) are unidimen-

sionally interpreted.– In the case of intralingual studies, word length fre-

quency distributions are interpreted in terms of authorship, and in the case

of interlingual comparisons in terms of language-specific factors, only; the

possible influence of further influencing factors thus is not taken into con-

sideration.

However, much of this criticism must then be directed towards contemporary

research, too. Therefore, Mendenhall should be credited for having established

an empirical basis for word length research, and for having initiated a line of
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research which continues to be relevant still today. Particularly the last point

mentioned above, leads to the next period in the history of word length studies.

As can be seen, no attempt was made by Mendenhall to find a formal (mathe-

matical) model, which might be able to describe (or rather, theoretically model)

the frequency distribution. As a consequence, no objective comparison between

empirical and theoretical distributions has been possible.

In this respect, the work of a number of researchers whose work has only

recently and, in fact, only partially been appreciated adequately, is of utmost im-

portance. These scholars have proposed particular frequency distribution mod-

els, on the one hand, and they have developed methods to test the goodness

of the results obtained. Initially, most scholars have (implicitly or explicitly)

shared the assumption that there might be one overall model which is able to

represent a general theory of word length; more recently, ideas have been devel-

oped assuming that there might rather be some kind of general organizational

principle, on the basis of which various specific models may be derived.

The present treatment concentrates on the rise and development of such

models. It goes without saying that without empirical data, such a discussion

would be as useless as the development of theoretical models. Consequently, the

following presentation, in addition to discussing relevant theoretical models,

will also try to present the results of empirical research. Studies of merely

empirical orientation, without any attempt to arrive at some generalization, will

not be mentioned, however – this deliberate concentration on theory may be

an important explanation as to why some quite important studies of empirical

orientation will be absent from the following discussion.

The first models were discussed as early as in the late 1940s. Research then

concentrated on two models: the Poisson distribution, and the geometric dis-

tribution, on the other. Later, from the mid-1950s onwards, in particular the

Poisson distribution was submitted to a number of modifications and gener-

alizations, and this shall be discussed in detail below. The first model to be

discussed at some length, here, is the geometric distribution which was sug-

gested to be an adequate model by Elderton in 1949.

2. The Geometric Distribution (Elderton 1949)

In his article “A Few Statistics on the Length of English Words” (1949), English

statistician Sir William P. Elderton (1877–1962), who had published a book

on Frequency-Curves and Correlation some decades before (London 1906),

studied the frequency of word lengths in passages from English writers, among

them Gray, Macaulay, Shakespeare, and others.

As opposed to Mendenhall, Elderton measured word length in the number

of syllables, not letters, per word. Furthermore, in addition to merely counting

the frequencies of the individual word length classes, and representing them in
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graphical form, Elderton undertook an attempt to find a statistical model for

theoretically describing the distributions under investigation. His assumption

was that the frequency distributions might follow the geometric distribution.

It seems reasonable to take a closer look at this suggestion, since, histori-

cally speaking, this was the first attempt ever made to arrive at a mathematical

description of a word length frequency distribution. Where are zero-syllable

words, i.e., if class x = 0 is not empty (P0 6= 0), the geometric distribution

takes the following form (2.1):

Px = p · qx , x = 0, 1, 2, . . . , 0 < q < 1 , p = 1 − q . (2.1)

If class x = 0 is empty, however (i.e., if P0 = 0), and the first class are

one-syllable words (i.e., P1 6= 0) – then the geometric distribution looks as

follows (2.2):

Px = p · qx−1 , x = 1, 2, 3, . . . (2.2)

Thus, generally speaking, for r-displaced distributions we may say:

Px = p · qx−r , x = r, r + 1, r + 2, . . . (2.3)

Data given by Elderton (1949: 438) on the basis of letters by Gray, may serve

as material to demonstrate the author’s approach. Table 2.1 contains for each

word length (xi) the absolute frequencies (fi), as given by Elderton, as well as

the corresponding relative frequencies (pi).
1

There are various possibilities for estimating the parameter p of the geometric

distribution when fitting the theoretical model to the empirical data. Elderton

chose one of the standard options (at least of his times), which is based on the

mean of the distribution:

x̄ =
1

N

n∑

i=1

xi · fi =
7063

5237
= 1.3487 .

Since, by way of the maximum likelihood method (or the log-likelihood

method, respectively), it can be shown that, for P1 6= 0 (x = 1, 2, 3, . . .), p is

the reciprocal of the mean, i.e. p = 1/x̄; therefore, the calculation is as follows:

p̂ = 1/x̄ = 1/1.3487 = 0.7415

and

q̂ = 1 − p = 1 − 0.7415 = 0.2585.

1 In his tables, Elderton added the data for these frequencies in per mille, and on this basis he then calculated

the theoretical frequencies by fitting the geometric distribution to them. For reasons of exactness, only

the raw data will be used in the following presentation and discussion of Elderton’s data.
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Table 2.1: Word Length Frequencies for English Letters by Th.

Gray (Elderton 1949)

Number of Frequency of

syllables x-syllable words

(xi) (fi) (pi)

1 3987 0.7613

2 831 0.1587

3 281 0.0537

4 121 0.0231

5 15 0.0029

6 2 0.0004

In Elderton’s English data, which are represented in Table 2.1, there are

no zero-syllable words (P0 = 0); we are thus concerned with a 1-displaced

distribution. Therefore, formula (2.2) is to be applied. We thus obtain:

P1 =P (X = 1) = 0.7415 · 0.25851−1 = 0.7415

P2 =P (X = 2) = 0.7415 · 0.25852−1 = 0.1917 etc.

Based on these probabilities, the theoretical frequencies can easily be calcu-

lated:

NP1 =5237 · 0.7415 = 3883.08

NP2 =5237 · 0.1917 = 1003.89 etc.

The theoretical data, obtained by fitting the geometric distribution2 to the

empirical data from Table 2.1, are represented in Table 2.2 (cf. p. 22).

According to Elderton (1949: 442), the results obtained show that “the dis-

tributions [. . . ] are not sufficiently near to geometrical progressions to be so

described”. Figure 2.3 (cf. p. 22) presents a comparison between the empirical

data and the theoretical results, obtained by fitting the geometrical distribu-

tion to them (given in percentages). An inspection of this figure shows that

Elderton’s intuitive impression that the geometrical distribution is no adequate

model to be fitted to the empirical data in a convincing manner, cannot clearly

be corroborated.

2 As compared to the calculations above, the theoretical frequencies slightly differ, due to rounding effects;

additionally, for reasons not known, the results provided by Elderton (1949: 442) himself slightly differ

from the results presented here, obtained by the method described by him.
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Table 2.2: Fitting the Geometric Distribution to English Word

Length Frequencies (Elderton 1949)

xi NPi Pi

1 3883.08 0.7415

2 1003.89 0.1917

3 259.54 0.0496

4 67.10 0.0128

5 17.35 0.0033

6 4.48 0.0009

As was rather usual in his time, Elderton did not run any statistical procedure

to confirm his intuitive impression, i.e., to test the goodness of fit. Later, it would

become a standard procedure to at least calculate a Pearson χ2-goodness-of-fit

value in order to test the adequacy of the theoretical model. Given this later

development, it seems reasonable to re-analyze the result for Elderton’s data in

this respect.

Pearson’s χ2 is calculated by way of formula (2.4):

χ2 =
k∑

i=1

(fi −NPi)
2

Ei
. (2.4)

In formula (2.4), k is number of classes, fi is the observed frequency of a

given class, and NPi is the absolute theoretical frequency. For the data repre-

sented above, with k = 6 classes, we thus obtain χ2 = 79.33. The statistical

significance of this χ2 value depends on the degrees of freedom (d.f.), which
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Figure 2.3: Empirical and Theoretical Word Length Frequencies

(Elderton 1949)
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in turn, are calculated with regard to the number of classes (k) minus 1, and the

number of parameters (a) involved in the theoretical estimation:d.f. = k−a−1.

Thus, with d.f. = 6 − 2 = 4 the χ2 value obtained for Elderton’s data can be

interpreted in terms of a very poor fit indeed, since p(χ2) < 0.001.

However, it is a well-known fact that the value ofχ2 grows in a linear fashion

with an increase of the sample size. Therefore, the larger a sample, the more

likely the deviations tend to be statistically significant. Since linguistic samples

tend to be rather larger, various suggestions have been brought forth as to a

standardization ofχ2 scores. Thus, in contemporary linguistics, the discrepancy

coefficient (C), which is easily calculated as C = χ2/N , has met general

acceptance. The discrepancy coefficient, has the additional advantage that it is

not dependent on degrees of freedom: in related studies, one speaks of a good

fit for C < 0.02, and of a very good fit for C < 0.01.

In case of Elderton’s data, we thus obtain a discrepancy coefficient of C =
79.33/5237 = 0.015; ultimately, this can be regarded to be an acceptable fit.

Historically speaking, one should very much appreciate Elderton’s early attempt

to find an overall model for word length frequencies. What is problematic about

his approach is not so much that his attempt was only partly successful for some

English texts; rather, it is the fact that the geometrical distribution is adequate to

describe monotonously decreasing distributions only. And although Elderton’s

data are exactly of this kind, word length frequencies from many other languages

usually do not tend to display this specific shape.

Nevertheless, the geometric distribution has always attracted researchers’

attention. Some decades later, Merkytė (1972), for example, discussed the geo-

metric distribution with regard to its possible relevance for word length frequen-

cies. Analyzing randomly chosen lexical material from a Lithuanian dictionary,

he found differences as to the distribution of root words and words with affixes.

As a first result, Merkytė (1972: 131) argued in favor of the notion “that the dis-

tribution of syllables in the roots is described by a geometric law”, as a simple

special case of the negative binomial distribution (for k = 1).

As an empirical test shows, the geometric distribution indeed turns out to

be a good model. Since the data for the root words are given completely, the

results given by Merkytė (1972: 128) are presented in Table 2.3 (p. 24).

As opposed to the root words, Merkytė found empirical evidence in agree-

ment with the assumption that words with affixes follow a binomial distribution,

i.e.

Px =

(
n
x

)
pxqn−x , x = 0, 1, . . . n , 0 < p < 1, q = 1 − p . (2.5)

Unfortunately, no data are given for the words with affixes; rather, the author

confines himself to theoretical ruminations on why the binomial distribution

might be an adequate model. As a result, Merkytė (1972: 131) arrives at the
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Table 2.3: Fitting the Geometric Distribution to Word Length

Frequencies of Lithuanian Root Words (Merkytė

1972)

xi fi NPi

1 525 518

2 116 135

3 48 34

4 9 9

5 2 2

hypothesis that the distribution of words is likely to be characterized as a “com-

position of geometrical and binomial laws”.

In order to test his hypothesis, he gives, by way of an example, the relative

frequencies of a list of dictionary words taken from a Lithuanian-French dic-

tionary, represented in Table 2.4. Since the absolute sample size (N = 25036)

is given as well, the absolute frequencies can easily be reconstructed as in

Table 2.4.

Merkytė’s combination of these two distributions results in the convolution

of both for x = 1, . . . n, and the geometric alone for x = n+ 1, n+ 2, . . .; with

a slight correction of Merkytė’s presentation, it can be written as represented in

formula (2.6):

Px =






x−1∑
i=0

(
n
i

)
αiβn−ipqx−i−1 for x ≤ n

(
1 −

n∑
j=1

Pj

)
pqx−n−1 for x > n .

(2.6)

Here, q is estimated as q̂ = 1/x̄2, where x̄2 is the mean word length of the

sample’s second part, i.e. its tail (x > n), and p̂ = 1 − q̂. Parameter β, in turn,

is estimated as β̂ = (x̄− x̄2)/n, with α̂ = 1 − β̂.

The whole sample is thus arbitrarily divided into two portions, assuming that

at a particular point of the data, there is a rupture in the material. With regard

to the data presented in Table 2.4, Merkytė suggests n = 3 to be the crucial

point. The approach as a whole thus implies that word length frequency would

not be explained as an organic process, regulated by one overall mechanism,

but as being organized by two different, overlapping mechanisms.

In fact, this is a major theoretical problem: Given one accepts the suggested

separation of different word types – i.e., words with and without affixes – as

a relevant explanation, the combination of both word types (i.e., the complete
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Table 2.4: Theoretical Word Length Frequencies for Lithuanian

Words: Merkytė-Geometric, Binomial and Conway-

Maxwell-Poisson Distributions

(Merkytė) (Binomial) (CMP)

xi fi NPi

1 3609 3734.09 3966.55 3346.98

2 9398 9147.28 8836.30 9544.32

3 7969 8144.84 7873.87 7965.80

4 3183 3232.87 3508.13 3240.21

5 752 651.59 781.51 791.50

6 125 125.31 69.64 147.19

C 0.0012 0.0058 0.0012

material) does not, however, necessarily need to follow a composition of both

individual distributions. Yet, the fitting of the Merkytė geometric distribution

leads to convincing results: although the χ2 value of χ2 = 31.05 is not really

good (p < 0.001 for d.f. = 3), the corresponding discrepancy coefficient

C = 0.0012 proves the fit to be excellent.3 The results are represented in the

first two columns of Table 2.4.

As a re-analysis of Merkytė’s data shows, the geometric distribution cannot,

of course, be a good model due to the lack of monotonous decrease in the data.

However, the standard binomial distribution can be fitted to the data with quite

some success: although the χ2 value of χ2 = 144.34 is far from being satis-

factory, resulting in p < 0.001 (with d.f. = 3), the corresponding discrepancy

coefficient C = 0.0058 turns out be extremely good and proves the binomial

distribution to be a possible model as well. The fact that the Merkytė geometric

distribution turns out to be a better model as compared to the ordinary binomial

distribution, is no wonder since after all, with its three parameters (α, p, n), the

Merkytė geometric distribution has one parameter more than the latter.

Yet, this raises the question whether a unique, common model might not be

able to model the Lithuanian data from Table 2.4. In fact, as the re-analysis

shows, there is such a model which may very well be fitted to the data; we

are concerned, here, with the Conway-Maxwell-Poisson (cf. Wimmer/Altmann

1999: 103), a standard model for word length frequencies, which, in its 1-

displaced form, has the following shape:

3 In fact, the re-analysis led to slightly different results; most likely, this is due to the fact that the data

reconstruction on the basis of the relative frequencies implies minor deviations from the original raw data.
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Px =
ax−1

(x− 1)!bT1

, x = 1, 2, 3, . . . , T1 =
∞∑

j=1

aj

(j!)b
. (2.7)

Since this model will be discussed in detail below, and embedded in a broader

theoretical framework (cf. p. 77), we will confine ourselves here to a demonstra-

tion of its good fitting results, represented in Table 2.4. As can be seen, the fitting

results are almost identical as compared to Merkytės specific convolution of the

geometric and binomial distributions, although the Conway-Maxwell-Poisson

distribution has only two, not three parameters. What is more important, how-

ever, is the fact that, in the case of the Conway-Maxwell-Poisson distribution,

no separate treatment of two more or less arbitrarily divided parts of the whole

sample is necessary, so that in this case, the generation of word length follows

one common mechanism.

With this in mind, it seems worthwhile to turn back to the historical back-

ground of the 1940s, and to discuss the work of Čebanov (1947), who, inde-

pendent of and almost simultaneously with Elderton, discussed an alternative

model of word length frequency distributions, suggesting the 1-displaced Pois-

son distribution to be of relevance.

3. The 1-Displaced Poisson Distribution (Čebanov 1947)

Sergej Grigor’evič Čebanov (1897–1966) was a Russian military doctor from

Sankt Petersburg.4 His linguistic interests, to our knowledge, mainly concen-

trated on the process of language development. He considered “the distribution

of words according to the number of syllables” to be “one of the fundamen-

tal statistical characteristics of language structures”, which, according to him,

exhibits “considerable stability throughout a single text, or in several closely

related texts, and even within a given language group” (Čebanov 1947: 99).

As Čebanov reports, he investigated as many as 127 different languages and

vulgar dialects of the Indo-European family, over a period of 20 years. In his

above-mentioned article – as far as we know, no other work of his on this topic

has ever been published – Čebanov presented selected data from these studies,

e.g., from High German, Iranian, Sanskrit, Old Irish, Old French, Russian,

Greek, etc.

Searching a general model for the distribution of word length frequencies,

Čebanov’s starting expectation was a specific relation between the mean word

length x̄ of the text under consideration, and the relative frequencies pi of

the individual word length classes. In the next step, given the mean of the

4 For a short biographical sketch of Čebanov see Best/Čebanov (2001).
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distribution, Čebanov assumed the 1-displaced Poisson distribution to be an

adequate model for his data. The Poisson distribution can be described as

Px =
e−a · ax

x!
x = 0, 1, 2, . . . (2.8)

Since the support of (2.8) isx = 0, 1, 2, . . .with a ≥ 0, and since there are no

zero-syllable words in Čebanov’s data, we are concerned with the 1-displaced

Poisson distribution, which consequently takes the following shape:

Px =
e−a · ax−1

(x− 1)!
x = 1, 2, 3, . . . (2.9)

Čebanov (1947: 101) presented the data of twelve texts from different lan-

guages (or dialects). By way of an example, his approach will be demonstrated

here, with reference to three texts. Two of these texts were studied in detail

by Čebanov (1947: 102) himself: the High German text Parzival, and the Low

Frankish text Heliand; the third text chosen here, by way of example, is a pas-

sage from Lev N. Tolstoj’s Vojna i mir [War and Peace]. These data shall be

additionally analyzed here because they are a good example for showing that

word length frequencies do not necessarily imply a monotonously decreasing

profile (cf. class x = 2) – it will be remembered that this was a major problem

for the geometric distribution which failed be an adequate overall model (see

above). The absolute frequencies (fi), as presented by Čebanov (1947: 101), as

well as the corresponding relative frequencies (pi), are represented in Table 2.5

for all three texts.

Table 2.5: Relative Word Length Frequencies of Three Different

Texts (Čebanov 1947)

Number of Parzival Heliand Vojna i mir

syllables (xi) fi pi fi pi fi pi

1 1823 0.6280 1572 0.4693 466 0.2826

2 849 0.2925 1229 0.3669 541 0.3281

3 194 0.0668 452 0.1349 391 0.2371

4 37 0.0127 83 0.0248 172 0.1043

5 14 0.0042 64 0.0388

6 15 0.0091
∑

2903 3350 1698

As can be seen from Figure 2.4, all three distributions clearly seem to differ

from each other in their shape; particularly the Vojna i mir passage, displaying

a peak at two-syllable words, differs from the two others.
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Figure 2.4: Empirical Word Length Frequencies of Three Texts

(Čebanov 1947)

How then, did the Poisson distribution in its 1-displaced form fit? Let us

demonstrate this with reference to the data from Parzival in Table 2.5. Since the

mean in this text is x̄ = 1.4643, with â = x̄− 1 and referring to formula (2.9)

for the 1-displaced Poisson distribution, we thus obtain

Px =
e−(1.4643−1) · (1.4643 − 1)x−1

(x− 1)!
. (2.10)

Thus, for x = 1 and x = 2, we obtain

P1 =
e−0.4643 · 0.46430

0!
=

2.7183−0.4643 · 1

1
= 0.6285

P2 =
e−0.4643 · 0.46431

1!
= 2.7183−0.4643 · 0.4643 = 0.2918

Correspondingly, for x = 1 and x = 2, we receive the following theoretical

frequencies:

NP1 = 2903 · 0.6285 = 1824.54

NP2 = 2903 · 0.2918 = 847.10

Table 2.6 contains the results of fitting the 1-displaced Poisson distribution

to the empirical data of the three texts, or text passages, also represented in

Table 2.5 above.5

Whereas Elderton, in his analyses, did not run any statistical procedures to

statistically test the adequacy of the proposed model, Čebanov did so. Well

5 As compared to the calculations above, the theoretical frequencies slightly differ, due to rounding effects.

For reasons not known, the results also differ as compared to the data provided by Čebanov (1947: 102),

obtained by the method described above.
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Table 2.6: Fitting the 1-Displaced Poisson Distribution to Word

Length Frequencies (Čebanov 1947)

Number of Parzival Heliand Vojna i mir

syllables (xi) fi NPi fi NPi fi NPi

1 1823 1824.67 1572 1618.01 466 442.29

2 849 847.28 1229 1177.53 541 582.04

3 194 196.72 452 428.48 391 382.97

4 37 30.45 83 103.94 172 167.99

5 14 18.91 64 55.27

6 15 14.55
∑

2903 3350 1698

aware of A.A. Markov’s (1924) caveat, that “complete coincidence of figures

cannot be expected in investigations of this kind, where theory is associated with

experiment”, Čebanov (1947: 101) calculated χ2 goodness-of-fit values. As a

result, Čebanov (ibd.) arrived at the conclusion that the χ2 values “show good

agreement in some cases and considerable departure in others.” Let us follow

his argumentation step by step, based on the three texts mentioned above.

For Parzival, with k = 4 classes, we obtain χ2 = 1.45. This χ2 value can

be interpreted in terms of a very good fit, since p(χ2) = 0.48 (d.f. = 2).6

Whereas the 1-displaced Poisson distribution thus turns out to be a good model

for Parzival, Čebanov interprets the results for Heliand not to be: here, the value

is χ2 = 10.35, which, indeed, is a significantly worse, though still acceptable

result (p = 0.016 for d.f. = 3).7

Interestingly enough, the 1-displaced Poisson distribution would also turn

out to be a good model for the passage from Tolstoj’s Vojna i mir (not analyzed

in detail by Čebanov himself), with a value of χ2 = 5.82 (p = 0.213 for

d.f. = 4).

On the whole, Čebanov (1947: 101) arrives at the conclusion that the theoret-

ical results “show good agreement in some cases and considerable departure in

others.” This partly pessimistic estimation has to be corrected however. In fact,

Čebanov’s (1947: 102) interpretation clearly contradicts the intuitive impres-

sion one gets from an optical inspection of Figure 2.5: as can be seen, Pi(a),

represented for i = 1, 2, 3, indeed seems to be “determined all but completely”

6 Čebanov (1947: 102) himself reports a value of χ2 = 0.43 which he interprets to be a good result.
7 Čebanov (1947: 102) reports a value of χ2 = 13.32 and, not indicating any degrees of freedom, interprets

this result to be a clear deviation from expectation.



30 CONTRIBUTIONS TO THE SCIENCE OF TEXT AND LANGUAGE

Figure 2.5: The 1-Displaced Poisson Distribution as a Word

Length Frequency Distribution Model (Čebanov

1947)

by the mean of the text under consideration (ibd., 101). In Figure 2.5, Poisson’s

Pi(a) can be seen on the horizontal, the relative frequencies for pi on the vertical

axis).

The good fit of the 1-displaced Poisson distribution may also be proven

by way of a re-analysis of Čebanov’s data, calculating the discrepancy values

C (see above). Given that in case of all three texts mentioned and analyzed

above, we are concerned with relatively large samples (N = 2903 for Parzival,

N = 1649 for Heliand, and N = 1698 for the Vojna i mir passage). In fact,

the result is C < 0.01 in all three cases.8 In other words: what we have here

are excellent fits, in all three cases, which can be clearly seen in the graphical

illustration of Figure 2.6 (p. 31).

Unfortunately, Čebanov’s work was consigned to oblivion for a long time.

If at all, reference to his work was mainly made by some Soviet scholars,

who, terming the 1-displaced Poisson distribution “Čebanov-Fucks distribu-

tion”, would later place him on a par with German physician Wilhelm Fucks.

As is well known, Fucks and his followers would also, and independently of

8 As a corresponding re-analysis of the twelve data sets given by Čebanov (1947: 101) shows, C values

are C < 0.02 in all cases, and they are even C < 0.01 in two thirds of the cases.
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Figure 2.6: Fitting the 1-Displaced Poisson Distribution to Three

Text Segments (Čebanov 1947)

Čebanov’s work, favor the 1-displaced Poisson distribution to be an important

model, in the late 1950s. Before presenting Fucks’ work in detail, it is necessary

to discuss another approach, which also has its roots in the 1940s.

4. The Lognormal Distribution

A different approach to theoretically model word length distributions was pur-

sued mainly in the late 1950s and early 1960s by scholars such as Gustav Herdan

(1958, 1966), René Moreau (1963), and others.

As opposed to the approaches thus far discussed, these authors did not try to

find a discrete distribution model; rather, they worked with continuous models,

mainly the so-called lognormal model.

Herdan was not the first to promote this idea with regard to language. Before

him, Williams (1939, 1956) had applied it to the study of sentence length fre-

quencies, arguing in favor of the notion that the frequency with which sentences

of a particular length occur, are lognormally distributed. This assumption was

brought forth, based on the observation that sentence length or word length

frequencies do not seem to follow a normal distribution; hence, the idea of

lognormality was promoted. Later, the idea of word length frequencies being

lognormally distributed was only rarely picked up, such as for example by Rus-

sian scholar Piotrovskij and colleagues (Piotrovskij et al. 1977: 202ff.; cf. 1985:

278ff.).

Generally speaking, the theoretical background of this assumption can be

characterized as follows: the frequency distribution of linguistic units (as of

other units occurring in nature and culture) often tends to display a right-sided

asymmetry, i.e., the corresponding frequency distribution displays a positive
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skewness. One of the theoretical reasons for this can be seen in the fact that the

variable in question cannot go beyond (or remain below) a particular limit; since

it is thus characterized by a one-sided limitation in variation, the distribution

cannot be adequately approximated by the normal distribution.

Particularly when a distribution is limited by the value 0 to the left side, one

suspects to obtain fairly normally distributed variables by logarithmic transfor-

mations: as a result, the interval between 0 and 1 is transformed into −∞ to

0. In other words: the left part of the distribution is stretched, and at the same

time, the right part is compressed. The crucial idea of lognormality thus implies

that a given random variable X follows a lognormal distribution if the random

variable Y = log(X) is normally distributed. Given the probability density

function for the normal distribution as in (2.11),

y = f(x) =
1

σ ·
√

2π
· e− 1

2(x−µ
σ )

2

, −∞ < x <∞ (2.11)

one thus obtains the probability density function for the lognormal distribution

in equation (2.12):

y = f(x) =
1

σ · x ·
√

2π
· e− 1

2( ln x−µ
σ )

2

, 0 < x <∞ (2.12)

Herdan based his first analyses of word length studies on data by Dewey (1923)

and French et al. (1930). These two studies contain data on word length fre-

quencies, the former 78,633 words of written English, the latter 76,054 words

of spoken English. Thus, Herdan had the opportunity to do comparative anal-

yses of word length frequencies measured in letters and phonemes. In order to

test his hypothesis as to the lognormality of the frequency distribution, Herdan

(1966: 224) confined himself to graphical techniques only. The most widely

applied method in his time was the use of probability grids, with a logarithmi-

cally divided abscissa (x-axis) and the cumulative frequencies on the ordinate

(y-axis). If the resulting graph showed a more or less straight line, one regarded

a lognormal distribution to be proven.

As can be seen from Figure 2.7, the result seems to be quite convincing,

both for letters and phonemes. In his later monograph on The Advanced Theory

of Language as Choice and Chance, Herdan (1966: 201ff.) similarly analyzed

French data samples, taken from analyses by Moreau (1963). The latter had

analyzed several French samples, among them the three picked up by Herdan

in Figure 2.7:

1. 3,204 vocabulary entries from George Gougenheim’s Dictionnaire fonda-

mental de la langue française,

2. 76,918 entries from Émile Littré’s Dictionnaire de la langue française

3. 6,151 vocubulary items from the Histoire de Chevalier des Grieux et de

Manon Lescaut by the Abbé Prévost.
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(a) Herdan (1958: 224) (b) Herdan (1966: 203)

Figure 2.7: Word Length Frequencies on a Lognormal Probabil-

ity Grid (Herdan 1958/66)

The corresponding graph is reproduced in Figure 2.7. Again, for Herdan

(1966: 203), the inspection of the graph “shows quite a satisfactory linearity

[. . . ], which admits the conclusion of lognormality of the distribution.”

In this context, Herdan discusses Moreau’s (1961, 1963) introduction of a

third parameter (V0) into the lognormal model, ultimately causing a displace-

ment of the distribution; as can be seen, θ · log k is a mere re-parametrization

of σ – cf. (2.12).

f(x) =
1

(θ log k) · (x+ V0) ·
√

2π
· e−

1
2

(
log(x+V0)−log k

θ log k

)2

. (2.13)

Herdan considered this extension not to be necessary. In his book, he offered

theoretical arguments for the lognormal distribution to be an adequate model

(Herdan 1966: 204). These arguments are in line with the general characteristics

of the lognormal distribution, in which the random variables are considered to

influence each other in a multiplying manner, whereas the normal distribution

is characterized by the additive interplay of the variables (the variables thus

being considered to be independent of one another).
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Figure 2.8: P-P Plots for Fitting the Normal and Lognormal

Distributions to Word Length Frequencies in Abbé

Prévost’s Manon Lescaut

However, Herdan did not do any comparative analyses as to the efficiency of

the normal or the lognormal distribution, neither graphically nor statistically.

Therefore, both procedures shall be presented here, by way of a re-analysis of

the original data.

As far as graphical procedures are concerned, probability grids have been

replaced by so-called P-P plots, today, which also show the cumulative propor-

tions of a given variable and should result in a linear rise in case of normal dis-

tribution. By way of an example, Figure 2.8 represents the P-P plots for Manon

Lescaut, tested for normal and lognormal distribution. It can clearly be seen that

there are quite some deviations for the lognormal distribution (cf. Figure2.8(b)).

What is even more important, however, is the fact that the deviations are clearly

less expressed for the normal distribution (cf. Figure2.8(a)). Although this can,

in fact, be shown for all three data samples mentioned above, we will concentrate

on a statistical analysis of these observations.

Table 2.7 contains the relevant Kolmogorov-Smirnov values (KS) and the

corresponding p-values with the given degrees of freedom (d.f.) for all three

samples, both for the normal and the logarithmized values. Additionally, values

for skewness (γ1) and kurtosis (γ2) are given, so that the effect of the logarithmic

manipulation of the data can easily be seen.

As can clearly be seen, the deviations both from the normal and the lognor-

mal distributions are highly significant in all cases. Furthermore, differences

between normal and lognormal are minimal; in case of Manon Lescaut, the

lognormal distribution is even worse than the normal distribution.
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Table 2.7: Statistical Comparison of Normal and Lognormal Dis-

tributions for Three French Texts (Herdan 1966)

KS df p γ1 γ2

Manon Lescaut normal distr. 0.105
6151 < 0.0001

0.30 0.22

lognormal d. 0.135 −0.89 1.83

Littré normal distr. 0.108
76917 < 0.0001

0.53 0.49

lognormal d. 0.103 −0.47 0.68

Gougenheim normal distr. 0.121
3204 < 0.0001

0.80 2.06

lognormal d. 0.126 −0.55 1.12

The same holds true, by the way, for the above-mentioned data presented by

Piotrovskij et al. (1985: 283). The authors analyzed a German technical text

of 1,000 words and found, as they claimed, “a clear concordance between the

empirical distribution and the lognormal distribution of the random variable”.

As a justification of their claim they referred to a graphical representation of

empirical and theoretical values, only; however, they additionally maintained

that the assumed concordance may easily and strongly be proven by way of

Kolmogorov’s criterium (ibd., 281).

As a re-analysis of the data shows, this claim may not be upheld, however

(cf. table 2.8):

Table 2.8: Statistical Comparison of Normal and Lognormal Dis-

tribution for German Data (Piotrovskij 1985)

KS df p γ1 γ2

normal distr. 0.12
1000 0.0001

0.81 0.20

lognormal d. 0.08 −0.25 −0.52

As in the case of Herdan’s analyses, the effect of the logarithmic transfor-

mation can easily be deduced from the values for γ1 and γ2 (i.e., for skewness

and kurtosis). Also, the deviation from the normal distribution is highly signif-

icant (p < 0.001). However, as can be seen the deviation from the lognormal

distribution is highly significant as well, and, strictly speaking, even greater

compared to the normal distribution.

In summary, one can thus say that neither the normal distribution nor the

lognormal distribution model turns out to be adequate in praxis. With regard to
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this negative finding, one may add the result of a further re-analysis, saying that

in case of all three data samples discussed by Herdan, the binomial distribution

can very well be fitted to the empirical data, with 0.006 ≤ C ≤ 0.009. No such

fit is possible in the case of Piotrovskij’s data, however, which may be due to

the fact that the space was considered to be part of a word.

Incidently, Michel (1982) arrived at the very same conclusion, in an exten-

sive study on Old and New Bulgarian, as well as Old and New Greek material.

He tested the adequacy of the lognormal distribution for the word length fre-

quencies of the above-mentioned material on two different premises, basing his

calculation of word length both on the number of letters per word, and on the

number of syllables per word. As a result, Michel (1982: 198) arrived at the

conclusion “that the fitting fails completely”.9

One can thus say that there is overwhelming negative empirical evidence

which proves that the lognormal distribution is no adequate model for word

length frequencies of various languages. Additionally, and this is even more

important in the given context, one must state that there are also major theoretical

problems which arise in the context of the (log-)normal distribution as a possible

model for word length frequencies:

a. the approximation of continuous models to discrete data;

b. the doubtful dependence of the variables, due to the multiplying effect of

variables within the lognormal model;

c. the manipulation of the initial data by way of logarithmic transformations.

With this in mind, let us return to discrete models. The next historical step in

the history of word length studies were the important theoretical and empirical

analyses by Wilhelm Fucks, a German physician, whose theoretical models

turned out to be of utmost importance in the 1950s and 1960s.

5. The Fucks Generalized Poisson Distribution

5.1 The Background

As mentioned previously, the 1-displaced Poisson distribution had been sug-

gested by S.G. Čebanov in the late 1940s. Interestingly enough, some years

later the very same model – i.e., the 1-displaced Poisson distribution – was also

favored by German physicist Wilhelm Fucks (1955a,b, 1956b). Completely

independent of Čebanov, without knowing the latter’s work, and based on com-

pletely different theoretical assumptions, Fucks arrived at similar conclusions to

9 Michel also tested the adequacy of the 1-displaced Poisson distribution (see below, p. 46).
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those of Čebanov some years before. However, Fucks’ work was much more in-

fluential than was Čebanov’s, and it was Fucks rather than Čebanov, who would

later be credited for having established the 1-displaced Poisson distribution as

a standard model for word length frequency distributions.

When Fucks described the 1-displaced Poisson distribution and applied it

to his linguistic data, he considered it to be “a mathematical law, thus far not

known in mathematical statistics” (Fucks 1957: 34). In fact, he initially derived

it from a merely mathematical perspective (Fucks 1955c); in his application of

it to the study of language(s) and language style(s), he then considered it to be

the “general law of word-formation” (1955a: 88, 1957: 34), or, more exactly, as

the “mathematical law of the process of word-formation from syllables for all

those languages, which form their words from syllables” (Fucks 1955b: 209).

In fact, Fucks’ suggestion was the most important model discussed from the

1950s until the late 1970s; having the 1-displaced Poisson distribution in mind,

one used to refer to it as “the Fucks model”. Only in Russia, one should later

speak of the “Čebanov-Fucks distribution” (e.g., Piotrovskij et al. 1977: 190ff.;

cf. Piotrowski et al. 1985: 256ff.), thus adequately honoring the pioneering work

of Čebanov, too.

There was one major difference between Čebanov’s and Fucks’ approaches,

however: this difference has to be seen in the fact that Fucks’ approach was

based on a more general theoretical model, the 1-displaced Poisson distribution

being only one of its special cases (see below). Furthermore, Fucks, in a number

of studies, developed many important ideas on the general functioning not only

of language, but of other human sign systems, too. This general perspective as

to the “mathematical analysis of language, music, or other results of human

cultural activity” (Fucks 1960: 452), which is best expressed in Fucks’ (1968)

monograph Nach allen Regeln der Kunst, cannot be dealt with in detail, here,

where our focus is on the history of word length studies.

5.2 The General Approach

Ultimately, Fucks’ general model can be considered to be an extension of the

Poisson distribution; specifically, we are concerned with a particularly weighted

Poisson distribution. These weights are termed εk − εk+1, k indicating the

number of components to be analyzed.

In its most general form, this weighting generalization results in the following

formula (2.14):

pi = P (X = i) = e−λ
∞∑

k=0

(εk − εk+1) · λi−k

(i− k)!
. (2.14)

Here, the random variable X denotes the number of syllables per word, i.e.

X = i, i = 0, 1, 2, 3, . . . , I . The probability that a given word has i syllables,
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is pi = P (X = i), with
I∑

i=0
pi = 0, λ = µ − ε′, ε′ =

∞∑
k=1

εk and µ = E(X).

The parameters of the distribution {εk} are called the ε-spectrum. For (2.14),

there are a number of conditions postulated by Fucks which must be fulfilled:

(a) From the necessity that εk − εk+1 ≥ 0 it follows that εk+1 ≤ εk;

(b) Since the sum of all weights equals 1, we have

1 =
∞∑

k=0

(εk − εk+1) =
∞∑

k=0

εk −
∞∑

k=0

εk+1 = ε0; it follows that ε0 = 1.

Finally, from (a) and (b) it follows

(c) 1 = ε0 ≥ ε1 ≥ ε2 ≥ ε3 ≥ . . . ≥ εk ≥ εk+1 . . .

As can be seen from equation (2.14), the so-called “generalized Fucks distri-

bution” includes both the standard Poisson distribution (2.8) and the 1-displaced

Poisson distribution (2.9) as two of its special cases. Assuming that ε0 = 1, and

ε1 = ε2 = . . . = εk = 0 – one obtains the standard Poisson distribution (2.8):

pi = e−λ · λ
i

i!
i = 0, 1, 2, . . .

Likewise, for ε0 = ε1 = 1, and ε2 = ε3 = . . . = εk = 0, one obtains the

1-displaced Poisson distribution (2.9) (cf. p. 27):

pi = e−λ · λi−1

(i− 1)!
, i = 1, 2, . . .

As was already mentioned above, the only model which met general ac-

ceptance was the 1-displaced Poisson distribution. More often than not, Fucks

himself applied the 1-displaced Poisson distribution without referring to his

general model, and this may be one more reason why it has often (though rather

incorrectly) been assumed to be “the Fucks distribution”. In other words: In

spite of the overwhelming number of analyses presented by Fucks in the 1950s

and 1960s, and irrespective of the broad acceptance of the 1-displaced Poisson

distribution as an important model for word length studies, Fucks’ generaliza-

tion as described above can only be found in very few of his works (e.g., Fucks

1956a,b).

It is no wonder, then, that the generalized model has practically not been

discussed. Interestingly enough, however, several scholars of East European

background became familiar with Fucks’ concept, and they not only discussed

it at some length, but also applied it to specific data. It seems most reasonable

to assume that this rather strange circumstance is due to the Russian translation

of Fucks’ 1956b paper (cf. Fucks 1957).
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Before turning to the East European reception of Fucks’ model, resulting not

only in its application, but also in some modification of it, let us first discuss

some of the results obtained by Fucks in his own application of the 1-displaced

Poisson distribution to linguistic data.

5.3 The 1-Displaced Poisson Distribution as a Special Case
of Fucks’ Generalization of the Poisson Distribution

In his inspiring works, Fucks applied the 1-displaced Poisson distribution on

different levels of linguistic and textual analysis: on the one hand, he analyzed

single texts, but he also studied word length frequency distribution in text cor-

pora, both from one and the same language and across languages. Thus, his

application of the 1-displaced Poisson distribution included studies on (1) the

individual style of single authors, as well as on (2) texts from different authors

either (2.1) of one and the same language or (2.2) of different languages.

As an example of the study of individual texts, Figure 2.9(a) from Fucks

(1956b: 208) may serve. It shows the results of Fucks’ analysis of Goethe’s

Wilhelm Meister: on the horizontal x-axis, the number of syllables per word

(termed i by Fucks) are indicated, on the vertical y-axis the relative frequency

of each word length class (pi) can be seen. As can be seen from the dotted line in

Figure 2.9(a), the fitting of the 1-displaced Poisson distribution seems to result

in extremely good theoretical values.

As to a comparison of two German authors, Rilke and Goethe, on the one

hand, and two Latin authors, Sallust and Caesar, on the other, Figure 2.9(b)

may serve. It gives rise to the impression that word length frequency may be

characteristic of a specific author’s style, rather than of specific texts. Again,

the fitting of the 1-displaced Poisson distribution seems to be convincing.

There can be no doubt about the value of Fucks’ studies, and still today,

they contain many inspiring ideas which deserve to be further pursued. Yet, in

re-analyzing his works, there remains at least one major problem: Fucks gives

many characteristics of the specific distributions, starting from mean values and

standard deviations up to the central moments, entropy etc. Yet, there are hardly

ever any raw data given in his texts, a fact which makes it impossible to check

the results at which he arrived. Thus, one is forced to believe in the goodness of

his fittings on the basis of his graphical impressions, only; and this drawback is

further enhanced by the fact that there are no procedures which are applied to

test the goodness of his fitting the 1-displaced Poisson distribution. Ultimately,

therefore, Fucks’ works cannot but serve as a starting point for new studies

which would have to replicate his results.

There is only one instance where Fucks presents at least the relative, though

not the absolute frequencies of particular distributions in detail. This is when he

presents the results of a comparison of texts from nine different languages – eight



40 CONTRIBUTIONS TO THE SCIENCE OF TEXT AND LANGUAGE

(a) Goethe’s Wilhelm Meister (b) German and Latin authors

Figure 2.9: Fitting the 1-Displaced Poisson Distribution to Ger-

man and Latin Text Segments (Fucks 1956)

natural languages, and one artificial (cf. Fucks 1955a: 85ff.). The results for each

language are based on what Fucks (1955a: 84) considered to be “representative

cross-sections of written documents” of the given languages.

The relative frequencies are reproduced in Table 2.9 which, in addition to the

relative frequency of each word length class (measured in syllables per word),

also contains the mean (x̄), as well as the entropy (H) for each language, the

latter being calculated by way of formula (2.15):

H = −
n∑

i=1

pi ln pi . (2.15)

Unfortunately, quite a number of errors can be found in Fuck’ original table,

both as to the calculated values of x̄ and H; therefore, the data in Table 2.9

represent the corrected results which one obtains on the basis of the relative

frequencies given by Fucks and formula (2.15). We will come back to these

data throughout the following discussion, using them as exemplifying material.

Being well aware of the fact that for each of the languages we are concerned

with mixed data, we can ignore this fact, and see the data as a representation of

a maximally broad spectrum of different empirical distributions which may be

subjected to empirical testing.

Figure 2.10 (p. ??) illustrates the frequency distributions, based on the relative

frequencies of the word length classes for each language. The figure is taken

from Fucks (1955a: 85), since the errors in the calculation concern only x̄ and

H and are not relevant here. According to Fucks’ interpretation, all shapes fall

into one and the same profile, except for Arabic; as a reason for this, Fucks
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Table 2.9: Relative Frequencies, Mean Word Length, and En-

tropy for Different Languages (Fucks 1955)

English German Esperanto Arabic Greek

1 0.7152 0.5560 0.4040 0.2270 0.3760

2 0.1940 0.3080 0.3610 0.4970 0.3210

3 0.0680 0.0938 0.1770 0.2239 0.1680

4 0.0160 0.0335 0.0476 0.0506 0.0889

5 0.0056 0.0071 0.0082 0.0017 0.0346

6 0.0012 0.0014 0.0011 – 0.0083

7 – 0.0002 – – 0.0007

8 – 0.0001 – – –

x̄ 1.4064 1.6333 1.8971 2.1106 2.1053

H 0.3665 0.4655 0.5352 0.5129 0.6118

Japanese Russian Latin Turkish

1 0.3620 0.3390 0.2420 0.1880

2 0.3440 0.3030 0.3210 0.3784

3 0.1780 0.2140 0.2870 0.2704

4 0.0868 0.0975 0.1168 0.1208

5 0.0232 0.0358 0.0282 0.0360

6 0.0124 0.0101 0.0055 0.0056

7 0.0040 0.0015 0.0007 0.0004

8 0.0004 0.0003 0.0002 0.0004

9 0.0004 – – –

x̄ 2.1325 2.2268 2.3894 2.4588

H 0.6172 0.6355 0.6311 0.6279
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Figure 2.10: Relative Frequencies of Word Lengths in Eight Nat-

ural and One Artificial Languages (Fucks 1955)

assumed that the number of texts analyzed in this language might not have been

sufficient.

As was mentioned above, Fucks did not, as was not unusual at his time,

calculate any tests as to the significance of the goodness of his fits. It seems

that Fucks (1955a: 101) was very well aware of the problems using the χ2-

goodness-of-fit test for this purpose, since he explicitly emphasized that, “for

particular mathematical reasons”, his data are “not particularly adequate” for

the application of the χ2 test.

The problem behind Fucks’ assumption might be the fact that the χ2 value

increases in a linear way with an increase of sample size; therefore, results

are more likely to display significant differences for larger samples, which is

almost always the case in linguistic studies. As was mentioned above (cf. p. 23),

the problem is nowadays avoided by calculating the discrepancy coefficient

C = χ2/N , which is not dependent on the degrees of freedom. We may thus

easily, by way of a re-analysis, calculateC for the data given by Fucks, in order

to statistically test the goodness-of-fit of the 1-displaced Poisson distribution;

in order to do so, we simply have to create “artificial” samples of ca. 10,000

each, by multiplying the relative frequencies with 10,000.

Remembering that fitting is considered to be good in case of 0.01 < C <
0.02 and very good in case of C < 0.01, one has to admit that fitting the 1-

displaced Poisson distribution to Fucks’ data from different languages is not

really convincing (see Table 2.10): strictly speaking, it turns out to be adequate

only for an artificial language, Esperanto, and must be discarded as an overall

valid model.



History and Methodology of Word Length Studies 43

Table 2.10: Discrepancy Coefficient C as a Result of Fitting the

1-Displaced Poisson Distribution to Different Lan-

guages (Fucks 1955)

English German Esperanto Arabic Greek

C (1-par.) 0.0903 0.0186 0.0023 0.1071 0.0328

Japanese Russian Latin Turkish

C (1-par.) 0.0380 0.0208 0.0181 0.0231

It is difficult to say whether the observed failure is due to the fact that the

data for each of the languages originated from text mixtures (and not from

individual texts), or if there are other reasons. Still, Fucks and many followers

of his pursued the idea of the 1-displaced Poisson distribution as the most

adequate model for word length frequencies.

Although Fucks did not calculate any statistics to test the goodness of fit

(which in fact many people would not do still today), one must do him justice

and point out that he tried to go another way to empirically prove the adequacy of

his findings: knowing the values of x̄ andH for each language, Fucks graphically

illustrated their relationship and interdependency. Figure 2.11 shows the results,

with x̄ on the horizontal x-axis, andH on the vertical y-axis; the data are based

on the corrected values from Table 2.9.
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Figure 2.11: Entropy as a Function of Mean Word Length (Fucks

1955a)

Additionally, Fucks calculated the entropy of the theoretical distribution, es-

timating â as x̄; these values can easily be obtained by formula (2.8) (cf. p. 27),

and they are reproduced below in Table 2.11. Thus, one arrives at the curve in

Figure 2.11, representing the Poisson distribution (cf. Fucks 1955a: 85). As can
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Table 2.11: Empirical and Theoretical Entropy for Nine Word

Length Frequency Distributions (Fucks)

x̄ H [y] Ĥ [ŷ]

1.4064 0.3665 0.3590

1.6333 0.4655 0.4563

1.8971 0.5352 0.5392

2.1032 0.5129 0.5913

2.1106 0.6118 0.5917

2.1325 0.6172 0.6030

2.2268 0.6355 0.6184

2.3894 0.6311 0.6498

2.4588 0.6279 0.6614

be seen with Fucks (1955a: 88, 1960: 458f.), the theoretical distribution “rep-

resents the values found in natural texts very well”. In other words: evaluating

his results, Fucks once again confined himself to merely visual impressions,

as he did in the case of the frequency probability distribution. And again, it

would have been easy to run such a statistical test, calculating the coefficient

of determination (R2) in order to test the adequacy of the theoretical curve

obtained.

Let us shortly discuss this procedure: in a nonlinear regression model, R2

represents that part of the variance of the variable y, which can be explained

by variable x. There are quite a number of more or less divergent formulae to

calculate R2 (cf. Grotjahn 1982), which result in partly significant differences.

Usually, the following formula (2.16) is taken:

R2 = 1 −

n∑

i=1

(yi − ŷi)
2

n∑

i=1

(yi − ȳ)2
. (2.16)

With 0 ≤ R2 ≤ 1, one can say that the greater R2, the better the theoretical

fit. In order to calculateR2, we thus consider x̄ to be the independent variable x,

andH to be the dependent variable y. Thus, for each empirical xi, we need both

the empirical values (yi) and the theoretical values (ŷi) which can be obtained by

formula (2.8), and which are represented in Table 2.11. Based on these results,

we can now easily calculate R2, with ȳ = H[y] (cf. Table 2.11), as

R2 = 1 − 0.0097

0.0704
= 0.8768 . (2.17)
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As can be seen, the fit can be regarded to be relatively good.10 This result

is not particularly influenced by the fit for Arabic, which, according to Fucks,

deviates from the other languages. In fact, the value for R2 hardly changes if

one, following Fucks’ argumentation, eliminates the data for Arabic: under this

condition, the determination coefficient would result in R2 = 0.8763.

Still, there remains a major theoretical problem with the specific method

chosen by Fucks in trying to prove the adequacy of the 1-displaced Poisson

distribution: this problem is related to the method itself, i.e., in establishing a

relation between x̄ and H . Taking a second look at formula (2.15), one can

easily see that the entropy of a frequency distribution is ultimately based on pi,

only; pi, however, in case of the Poisson distribution, is based on parameter a
in formula (2.8), which is nothing but the mean x̄ of the distribution! In other

words, due to the fact that the Poisson distribution is mainly shaped by the mean

of the distribution, Fucks arrives at a tautological statement, relating the mean

x̄ of the Poisson distribution to its entropy H .

To summarize, one has thus to draw an important conclusion: Due to the fact

that Fucks did not apply any suitable statistics to test the goodness of fit for the

1-displaced Poisson distribution, he could not come to the point of explicitly

stating that this model may be adequate in some cases, but is not acceptable as

a general standard model. Still, Fucks’ suggestions had an enormous influence

on the study of word length frequencies, particularly in the 1960’s. Most of

these subsequent studies concentrated on the 1-displaced Poisson distribution,

as suggested by Fucks.

In fact, work on the Poisson distribution is by no means a matter of the past.

Rather, subsequent to Fucks’ (and of course Čebanov’s) pioneering work on

the Poisson distribution, there have been frequent studies discussing and trying

to fit the 1-displaced Poisson distribution to linguistic data, with and without

reference to the previous achievements.

No reference to Fucks (or Čebanov) is made, for example, by Rothschild

(1986) in his study on English dictionary material. Rothschild’s initial discus-

sion of previous approaches to word length frequencies, both continuous and

discrete, was particularly stimulated by his disapproval of Bagnold’s (1983) as-

sumption that word length distributions are not Gaussian, but skew (hyperbolic

or double exponential) distributions. Discussing and testing various distribution

models, Rothschild did not find any one of the models he tested to be adequate.

This holds true for the (1-displaced) Poisson distribution, as well, which, ac-

cording to Rothschild (1986: 317), “fails on a formal χ2-test”. Nevertheless, he

considered it to be “the most promising candidate” (ibd., 321) – quite obviously,

faute de mieux. . .

10 Calculating the determination coefficient with the data given by Fucks himself results in R2 = 0.8569.
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As opposed to Rothschild, Michel (1982), in his above-mentioned study

of Old and New Bulgarian and Greek material (cf. p. 36), explicitly referred

to Fucks’ work on the Poisson distribution. As was said above, Michel first

found the lognormal distribution to be a completely inadequate model. He then

tested the 1-displaced Poisson distribution and obtained negative results as well:

although fitting the Poisson distribution led to better results as compared to the

lognormal distribution, word length in his data turned out not to be Poisson

distributed, either (Michel 1982: 199f.)

Finally, Grotjahn (1982) whose work will be discussed in more detail below

(cf. p. 61ff.), explicitly discussed Fucks’ work on the 1-displaced Poisson dis-

tribution, being able to show under which empirical conditions it is likely to be

an adequate model, and when it is prone to fail. He too, however, did not dis-

cuss the 1-displaced Poisson distribution as a special case of Fucks’ generalized

Poisson model.

It seems reasonable, therefore, to follow Fucks’ own line of thinking. In

doing so, let us first direct our attention to the 2-parameter model suggested by

him, and then to his 3-parameter model.

5.4 The (1-Displaced) Dacey-Poisson Distribution as a
2-Parameter Special Case of Fucks’ Generalization of
the Poisson Distribution

It has been pointed out in the preceding section that for ε0 = 1, and ε1 =
ε2 = . . . = εk = 0 the standard Poisson distribution (2.8) is obtained from

formula (2.14). Likewise, for ε0 = ε1 = 1, and ε2 = ε3 = . . . = εk = 0, one

obtains the 1-displaced Poisson distribution (2.9), which has been discussed

above (cf. p. 27). In either case, the result is a 1-parameter model in which only

λ has to be estimated.

In a similar way, two related 2-parameter distributions can be derived from

the general model (2.14) under the following circumstances: In case of ε0 =
1, ε1 6= 0, and εk = 0 for k ≥ 2, one obtains the so-called Dacey-Poisson

distribution (cf. Wimmer/Altmann 1999: 111), replacing ε1 by α:

pi = (1 − α) · e
−λλi

i!
+ α · e

−λλi−1

(i− 1)!
, i = 0, 1, 2, . . . (2.18)

with λ = µ− α. Here, in addition to λ, a second parameter (ε1 = α) has to be

estimated, e.g., as α̂ =
√
x̄−m2.

Similarly, for ε0 = ε1 = 1, ε2 6= 0, and εk = 0 for k ≥ 3, one obtains

a model which has become known as the 1-displaced Dacey-Poisson distribu-

tion (2.19), replacing ε2 by α:

pi = (1 − α) · e
−λλi−1

(i− 1)!
+ α · e

−λλi−2

(i− 2)!
, i = 1, 2, . . . (2.19)
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with λ = (µ− α) − 1; in this case, α can be estimated as α̂ =
√
x̄− 1 −m2.

It is exactly the latter distribution (2.19) which has been discussed by Fucks

as another special case of his generalized Poisson model, though not under

this name. Fucks has not systematically studied its relevance; still, it might be

tempting to see what kind of results are yielded by this distribution for the data

already analyzed above (cf. Table 2.10). Table 2.12 (which additionally contains

the dispersion quotient d to be explained below) represents the values of the

discrepancy coefficient C as a result of a corresponding re-analysis.

Table 2.12: Discrepancy Coefficient C as a Result of Fitting the

1-Displaced Dacey-Poisson Distribution to Different

Languages (Fucks 1955)

English German Esperanto Arabic Greek

C (2-par.) — — 0.0019 0.0077 —

d 1.3890 1.1751 0.9511 0.5964 1.2179

Japanese Russian Latin Turkish

C (2-par.) — — 0.0149 0.0021

d 1.2319 1.1591 0.8704 0.8015

As can be seen from Table 2.12, in some cases, the results are slightly better

as compared to the results obtained from fitting the 1-displaced Poisson distri-

bution (cf. Table 2.10). However, in some cases no results can be obtained. The

reason for this failure is the fact that the estimation of α as α̂ =
√
x̄− 1 −m2

(see above) results in a negative root, obviously due to the fact that the estimate

α̂ is not defined if x̄− 1 ≤ m2.

Recently, Stadlober (2003) gave an explanation for this finding. Referring to

Grotjahn’s (1982) work, which will be discussed below (cf. p. 61ff.), Stadlober

analyzed the theoretical scope of Fucks’ 2-parameter model. Grotjahn’s interest

had been to find out under what conditions the 1-displaced Poisson distribution

can be an adequate model for word length frequencies. Therefore, Grotjahn

(1982) had suggested to calculate the quotient of dispersion δ, based on the

theoretical values for a sample’s mean (µ) and its variance (σ2):

δ =
σ2

µ
. (2.20)

For r-displaced distributions, the corresponding equation is

δ =
σ2

µ− r
, (2.21)

r being the displacement parameter.



48 CONTRIBUTIONS TO THE SCIENCE OF TEXT AND LANGUAGE

The coefficient δ can, of course, be calculated not only for theoretical fre-

quencies, but also for empirical frequencies, then having the notation

d =
m2

x̄− r
. (2.22)

Given both the empirical value of d and the value of δ, one can easily test the

goodness of fitting the Poisson distribution to empirical data, by calculating the

deviation of d (based on the empirical data) from δ (as the theoretical value to

be expected). Now, since, for the 1-displaced Poisson distribution, the variance

V ar(X) = σ2 = µ− 1, we have

δ =
µ− 1

µ− 1
= 1 .

The logical consequence arising from the fact that for the Poisson distribu-

tion, δ = 1, is that the latter can be an adequate model only as long as d ≈ 1
in an empirical sample. Now, based on these considerations, Stadlober (2003)

explored the theoretical dispersion quotient δ for the Fucks 2-parameter distri-

bution (2.19), discussed above. Since here, V ar(X) = µ− 1 − ε22, it turns out

that δ ≤ 1; this means that this 2-parameter model is likely to be inadequate as

a theoretical model for empirical samples with d > 1.

As in the case of the 1-displaced Poisson distribution, one has thus to ac-

knowledge that the Fucks 2-parameter (1-displaced Dacey-Poisson) distribution

is an adequate theoretical model only for a specific type of empirical distribu-

tions. This leads to the question whether the Fucks 3-parameter distribution is

more adequate as an overall model.

5.5 The 3-Parameter Fucks-Distribution as a Special Case
of Fucks’ Generalization of the Poisson Distribution

In the above sections, the 1-displaced Poisson distribution and the 1-displaced

Dacey-Poisson distribution were derived as two special cases of the Fucks

Generalized Poisson distribution as described in (2.14). In the first case, the

ε-spectrum had the form ε0 = ε1 = 1, εk = 0 for k ≥ 2, and in the second

case ε0 = ε1 = 1, ε2 = α, εk = 0 for k ≥ 3.

Now, in the case of the 3-parameter model, ε2 and ε3 have to be estimated,

the whole ε-spectrum having the form: ε0 = ε1 = 1, ε2 = α, ε3 = β, εk = 0
for k ≥ 4, resulting in the following model:

pi = e−(µ−1−α−β) ·
3∑

k=1

(εk − εi+1)
(µ− 1 − α− β)i−k

(i− k)!
(2.23)

Replacing λ = mu−α−β, the probability mass function has the following

form:
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p1 = e−λ · (1 − α)

p2 = e−λ · [(1 − α) · λ+ (α− β)]

pi = e−λ

[
(1 − α) λi−1

(i−1)! + (α− β) λi−2

(i− 2)!
+ β λi−3

(i− 3)!

]
, i ≥ 3

As to the estimation of ε2 = α and ε3 = β, Fucks (1956a: 13) suggested

calculating them by reference to the second and third central moments (µ2 and

µ3). It would lead too far, here, to go into details, as far as their derivation is

concerned. Still, the resulting 2 × 2-system of equations shall be quoted:

(a) µ2 = µ1 − 1 − (α+ β)2 + 2β

(b)µ3 = µ3 = µ1+2(1+α+β)3−3(1+α+β)2−6(α+β)(α+2β)+6β

As can be seen, the solution of this equation system – which can be math-

ematically simplified (cf. Antić/Grzybek/Stadlober 2005a) – involves a cubic

equation. Consequently, three solutions are obtained, not all of which must

necessarily be real solutions. For each real solution the values for ε2 = α and

ε3 = β have to be estimated (which is easily done by computer programs today,

as opposed to in Fucks’ time).11

Before further going into details of this estimation, let us remember that there

are two important conditions as to the two parameters:

(a) ε2 = α ≤ 1 and ε3 = β ≤ 1,

(b) ε2 = α ≥ β = ε3.

With this in mind, let us once again analyze the data of Table 2.9, this time

fitting Fucks’ 3-parameter model. The results obtained can be seen in Table 2.13;

results not meeting the two conditions mentioned above, are marked as ∅.

It can clearly be seen that in some cases, quite reasonably, the results for the

3-parameter model are better, as compared to those of the two models discussed

above. One can also see that the 3-parameter model may be an appropriate model

for empirical distributions in which d > 1 (which was the decisive problem for

the two models described above): thus, in the Russian sample, for example,

where d = 1.1591, the discrepancy coefficient is C = 0.0005. However, as

the results for German and Japanese data (with d = 1.1751 and d = 1.2319,

respectively) show, d does not seem to play the crucial role in case of the 3-

parameter model.

11 In addition to a detailed mathematical reconstruction of Fucks’ ≪Theory of Word Formation≫,

Antić/Grzybek/Stadlober (2005b) have tested the efficiency of Fucks’ model in empirical research.



50 CONTRIBUTIONS TO THE SCIENCE OF TEXT AND LANGUAGE

Table 2.13: Discrepancy Coefficient C as a Result of Fitting the

Fucks 3-Parameter Poisson Distribution to Different

Languages (Fucks 1955)

English German Esperanto Arabic Greek

C ∅ ∅ 0.00004 0.0021 ∅

ε̂2 — — 0.3933 0.5463 —

ε̂3 — — 0.0995 -0.1402 —

d 1.3890 1.1751 0.9511 0.5964 1.2179

Japanese Russian Latin Turkish

C ∅ 0.0005 0.0003 0.0023

ε̂2 — 0.2083 0.5728 0.6164

ε̂3 — 0.1686 0.2416 0.1452

d 1.2319 1.1591 0.8704 0.8015

In fact, as Antić/Grzybek/Stadlober (2005a) show, the conditions for the

Fucks 3-parameter model to be appropriate are slightly different. The details

need not be discussed here; it may suffice to say that it is ultimately the difference

M = x̄−m2, i.e. the difference between the mean of the empirical distribution

(x̄) and its variance (m2). One thus obtains the following two conditions:

1. The sum a = ε̂2 + ε̂3 = α̂+ β̂ must be in a particular interval:

ai ∈
[

1 −
√

4M − 3

2
,
1 +

√
4M − 3

2

]
, i = 1, 2, 3

Thus, there are two interval limits a1 and a2:

ai1 =
1 −

√
4M − 3

2
and ai2 =

1 +
√

4M − 3

2
.

2. In order to be a ∈ R, the root 4M − 3 must be positive, i.e. 4M − 3 ≥ 0;

therefore, M = x̄−m2 ≥ 0.75.

From the results represented in Table 2.14 (p. 51) it can clearly be seen why,

in four of the nine cases, the results are not as desired: there are a number of

violations, which are responsible for the failure of Fucks’ 3-parameter model.

These violations can be of two kinds:

a. As soon as M < 0.75, the definition of the interval limits of a1 and a2

involves a negative root – this is the case with the Japanese data, for example;

b. Even if the first condition is met with M ≥ 0.75, fitting the Fucks 3-

parameter model may fail, if the condition ai1 < a < ai2 is not fulfilled –

this can be seen in the case of the English, German, and Greek data.
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Table 2.14: Violations of the Conditions for Fucks’ 3-Parameter

Model

English German Esperanto Arabic Greek

C ∅ ∅ < 0.01 < 0.01 ∅

ε̂2 — — 0.3933 0.5463 —

ε̂3 — — 0.0995 -0.1402 —

a = ε̂2 + ε̂3 -0.0882 -0.1037 0.4929 0.4061 0.2799

ai1 0.1968 0.1270 -0.0421 -0.3338 0.4108

ai2 0.8032 0.8730 1.0421 1.3338 0.5892

ai1 < a < ai2 − − X X −
x̄ 1.4064 1.6333 1.8971 2.1032 2.1106

m2 0.5645 0.7442 0.8532 0.6579 1.3526

M = x̄−m2 0.8420 0.8891 1.0438 1.4453 0.7580

M ≥ 0.75 X X X X X

Japanese Russian Latin Turkish

C ∅ < 0.01 < 0.01 < 0.01

ε̂2 — 0.2083 0.5728 0.6164

ε̂3 — 0.1686 0.2416 0.1452

a = ε̂2 + ε̂3 -0.1798 0.3769 0.8144 0.7616

ai1 C 0.2659 -0.1558 -0.2346

ai1 C 0.7341 1.1558 1.2346

ai1 < a < ai2 − X X X

x̄ 2.1325 2.2268 2.3894 2.4588

m2 1.3952 1.4220 1.2093 1.1692

M = x̄−m2 0.7374 0.8048 1.1800 1.2896

M ≥ 0.75 − X X X
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Fucks’ 3-parameter model thus is adequate only for particular types of empirical

distributions, and it can not serve as an overall model for language, not even for

syllabic languages, as Fucks himself claimed. However, some of the problems

met might be related to the specific way of estimating the parameters suggested

by him, and this might be the reason why other authors following him tried to

find alternative ways.

5.6 The Georgian Line: Cercvadze, Čikoidze, Cilosani,
Gačečiladze

Quite early, three Georgian scholars, G.N. Cercvadze, G.B. Čikoidze, and

T.G. Gačečiladze (1959), applied Fucks’ ideas to Georgian linguistic mate-

rial, mainly to phoneme frequencies and word length frequencies. Their study,

which was translated into German as early as 1962, and which was later ex-

tended by Gačečiladze/Cilosani (1971), was originally inspired by the Russian

translation of Fucks’ English-language article ≪Mathematical Theory of Word

Formation≫. Fucks’ article, originally a contribution to the 1956 London Con-

ference on Information Theory, had been published in England in 1956, and it

was translated into Russian only one year later, in 1957. As opposed to most

of his German papers, Fucks had discussed his generalization at some length

in this English synopsis of his work, and this is likely to be the reason why his

approach received much more attention among Russian-speaking scholars.

In fact, Cercvadze, Čikoidze, and Gačečiladze (1959) based their analyses

on Fucks’ generalization; the only thing different from Fucks’ approach is

their estimation of the two parameters ε2 and ε3 of Fucks 3-parameter model:

as opposed to Fucks, they estimated ε2 and ε3 not with recourse to the central

moments, but to the initial moments of the empirical distribution. The empirical

central moment of the order r

mr =
1

(N − 1)

∑

x

(x− x̄)rfx

is an estimate of the r-th theoretical moment defined as

µr =
∑

x

(x− µ)rPx.

As estimate for the theoretical initial moment of the order r

µ′r =
∑

x

xrPx

serves the empirical r-th initial moment given as:
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m′
r =

1

N

∑

x

xrfx .

Since it can be shown that central moments and initial moments can be

transformed into each other, the results can be expected to be identical; still, the

procedure of estimating is different.

We need not go into details, here, as far as the derivation of the Fucks dis-

tribution and its generating function is concerned (cf. Antić/Grzybek/Stadlober

2005a). Rather, it may suffice to name its first three initial moments, which are

necessary for the equation system to be established, which, in turn, is needed

for the estimation of ε2 and ε3. Thus, with

∞∑

k=1

εk = ε′ (2.24)

we have the first three initial moments of Fucks’ distribution:

µ′1 = µ

µ′2 = µ2 + µ− ε′
2 − 2ε′ + 2

∞∑

k=1

kεk

µ′3 = µ3 + 3µ2 + µ+ 2ε′
3

+ 3ε′
2 − ε′ − 3µε′

2 − 6µε′+

+
∞∑

k=0

k3 (εk − εk+1) + 6
(
µ− ε′

) ∞∑

k=1

kεk

(2.25)

Now, replacing ε2 with α, and ε3 with β, we obtain the following system of

equations:

(a) µ′2 = µ2 + µ− (1 + α+ β)2 − 2 (1 + α+ β) + 2 (1 + 2α+ 3β)

(b) µ′3 = µ3 + 3µ2 + µ+ 2 (1 + α+ β)3 + 3 (1 − µ) (1 + α+ β)2 + 6α+
+18β − 6µ (1 + α+ β) + 6 (µ− 1 − α− β) (1 + 2α+ 3β) .

After the solution for α and β, we thus have the following probabilities:

p1 = e−λ · (1 − α)

p2 = e−λ · [(1 − α) · λ+ (α− β)]

pi = e−λ

[
(1 − α) λi−1

(i− 1)!
+ (α− β) λi−2

(i− 2)!
+ β λi−3

(i− 3)!

]
, i ≥ 3

with λ = µ− 1 − α− β .
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As was said above, the results are identical as compared to those obtained

by recourse to the central moments. Unfortunately, there are several mistakes

in the authors’ own formula; therefore, there is no sense in reproducing their

results on their Georgian sample, here.12

Almost twenty years later, Russian scholars Piotrovskij, Bektaev, and Pio-

trovskja (1977: 193; cf. 1985: 261), would again refer to Fucks’ generalized

model. These authors quite rightly termed the above-mentioned 1-displaced

Poisson distribution (2.9) the “Čebanov-Fucks distribution” (cf. p. 27). In ad-

dition to this, they mentioned the so-called “generalized Gačečiladze-Fucks

distribution”, which deserves some more attention here.

As was seen above, the 1959 paper by Cercvadze, Čikoidze, and Gačečiladze

was based on Fuck’s generalization of the Poisson distribution. Obviously,

these authors indeed once again generalized the Fucks model, which is not

inherent in the 1959 paper mentioned, but represented in an extension of it by

Gačečiladze/Cilosani (1971). This extension contains an additional factor ϕnu,

which is dependent on three parameters:

(a) the mean of the sample (̄i),

(b) the relevant class i,

(c) the sum of all εν , A =
∞∑

ν=1
εν (termed ε′ by Fucks).

As a result, the individual weights of the generalized Fucks distribution,

defined as (εk − εk+1), are multiplied by the function ϕν . Unfortunately,

Gačečiladze/Cilosoni (1971: 114) do not explain the process by which ϕnu

may be theoretically derived; they only present the final formula (2.26):

Pi = e
−
(
ī−A

) ∞∑

ν=0

(εν − εν+1)
(λ−A)i−ν

(i− ν)!
ϕν (A, ī, i) (2.26)

Here, ī is the mean of the sample, and (εk − εk+1) are the weighting fac-

tors. Unfortunately, Piotrovskij et al. (1977: 195), who term formula (2.26)

the “Fucks-Gačečiladze distribution”, also give no derivation for φν . Assuming

that ϕν takes account of the contextual environment, they only refer to Fucks’

1955 Mathematische Analyse von Sprachelementen, Sprachstil und Sprachen.

However, neither Fucks’ generalization nor ϕ are mentioned in this work.

Thus, as to the theoretical derivation of ϕν , there are only sparse references

by Gačečiladze/Cilosani (1971: 114) who mentioned some of their Georgian

publications, which are scarcely available.

12 In fact, in spite of, or rather due to their obvious calculation errors, the authors arrived at a solution for ε2

and ε3, which yields a good theoretical result; these values cannot be derived from the correct formula,

however, and therefore must be considered to be a casual and accidental ad hoc solution.
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Still, it can easily be seen that for φν → 1, one obtains the generalized Fucks

distribution, which has also been discussed by some Polish authors.

5.7 Estimating the Fucks Distribution with First-Class
Frequency (Bartkowiakowa/Gleichgewicht 1964/65)

Two Polish authors, Anna Bartkowiakowa and Boles law Gleichgewicht (1964,

1965), also suggested an alternative way to estimate the two parameters ε2 and ε3
of Fucks’ 3-parameter distribution. Based on the standard Poisson distribution,

as represented in (2.27),

gk =
λk

k!
e−λ , k = 0, 1, 2, . . . (2.27)

and referring to Fucks’ (2.14) generalization of it, the authors reformulated the

latter as seen in (2.28):

pi =

∞∑

k=0

(εk − εk+1)e−λ λi−k

(i− k)!

=
∞∑

k=0

(εk − εk+1) · gi−k .

(2.28)

Determining ε0 = ε1 = 1, and εk = 0 for k > 3, the two parameters ε2 6= 0
and ε3 6= 0 remain to be estimated on the basis of the empirical distribution.

Based on these assumptions, the following special cases are obtained for (2.28):

p1 = (1 − ε2) · g0
p2 = (1 − ε2) · g1 + (ε2 − ε3) · g0
pi = (1 − ε2) · gi−1 + (ε2 − ε3) · gi−2 + ε3 · gi−3 for i ≥ 3

with λ = µ− (1 + ε2 + ε3).

As to the estimation of ε2 and ε3, the authors did not set up an equation

system on the basis of the second and third central moments (µ2 and µ3), as did

Fucks, thus arriving at a cubic equation; rather, they first defined the portion

of one-syllable words (p1), and then modelled the whole distribution on that

proportion. Thus, by way of a logarithmic transformation of p1 = (1 − ε2) · g0
in formula (2.28), one obtains the following sequence of transformations:

ln
p1

(1 − ε2)
= ln g0

ln
p1

(1 − ε2)
= − λ

ln
p1

(1 − ε2)
= − [µ− (1 + ε2 + ε3)] .
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Referring to the empirical distribution, a first equation for an equation system

to be solved (see below) is thus gained from the first probability (p1) of the

empirical distribution:

ln
p̂1

(1 − ε̂2)
= − [x̄− (1 + ε̂2 + ε̂3)] (2.29)

The second equation for that system is then gained from the variance of the

empirical distribution. Thus, one gets

µ2 = µ− (1 + ε2 + ε3)2 + 2 · (ε2 + 2 · ε3)

resulting in the second equation for the equation system to be established:

m2 = x̄− (1 + ε̂2 + ε̂3)2 + 2 · (ε̂2 + 2ε̂3) (2.30)

With the two equations (2.29) and (2.30), we thus have the following system

of equations, adequate to arrive at a solution for ε2 and ε3:

(a) ln
p̂1

(1 − ε̂2)
= − [x̄− (1 + ε̂2 + ε̂3)]

(b)m2 − x̄ = −(1 + ε̂2 + ε̂3)2 + 2 (ε̂2 + 2ε̂3)

Bartkowiakowa/Gleichgewicht (1964) not only theoretically presented this

procedure to estimate ε2 and ε3; they also offered the results of empirical studies,

which were meant to be a test of their model. These analyses comprised nine

Polish literary texts, or segments of them, and the results of these analyses

indeed proved their approach to be successful.

Table 2.15 contains the results: as can be seen, the discrepancy coefficient

is C < 0.01 in all cases; furthermore, in six of the nine samples, the result is

indeed better as compared to Fucks’ original estimation.

For the sake of comparison, Table 2.15 also contains the results for the (1-

displaced) Poisson and the (1-displaced) Dacey-Poisson distributions, which

were calculated in a re-analysis of the raw data provided by the Polish authors.

A closer look at these data shows that the Polish text samples are relatively

homogeneous: for all texts, the dispersion quotient is in the interval 0.88 ≤
d ≤ 1.04, and 0.95 ≤M ≤ 1.09.
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Table 2.15: Fitting the Fucks 3-Parameter Model to Polish Data,

with Parameter Estimation Based on First-Class Fre-

quency

1 2 3 4 5

x̄ 1.81 1.82 1.96 1.93 2.07

m2 0.76 0.73 0.87 0.94 1.07

d 0.93 0.88 0.91 1.00 0.99

M 1.05 1.09 1.09 0.99 1.00

C (Poisson) 0.00420 0.00540 0.00370 0.00170 0.00520

C (Dacey-Poisson) 0.00250 0.00060 0.00200 ∅ 0.00531

C (m2,m3) 0.00240 0.00017 0.00226 0.00125 0.00085

C (p̂1,m2) 0.00197 0.00043 0.00260 0.00194 0.00032

6 7 8 9

x̄ 2.12 2.05 2.18 2.16

m2 1.10 0.98 1.21 1.21

d 0.98 0.94 1.03 1.04

M 1.02 1.07 0.97 0.95

C (Poisson) 0.00810 0.00220 0.01360 0.00940

C (Dacey-Poisson) 0.00862 0.00145 ∅ ∅

C (m2,m3) 0.00084 0.00120 0.00344 0.00383

C (p̂1,m2) 0.00030 0.00077 0.00216 0.00271

This raises the question in how far the procedure suggested by Bartkowia-

kowa/Gleichgewicht (1964) is able to improve the results for the nine different

languages analyzed by Fucks himself (cf. Table 2.9, p. 41). Table 2.16 represents

the corresponding results.

In summary, one may thus say that the procedure to estimate the two param-

eters ε2 and ε3, as suggested by Bartkowiakowa/Gleichgewicht (1964), may

indeed, for particular samples, result in better fittings. However, they cannot

overcome the overall limitations of Fucks’ 3-parameter model, which have

been discussed above.
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Table 2.16: Fucks’ 3-Parameter Model, with Parameter Estima-

tion

Esperanto Arabic Russian Latin Turkish

m2,m3

ε̂2 0.3933 0.5463 0.2083 0.5728 0.6164

ε̂3 0.0995 -0.1402 0.1686 0.2416 0.1452

C 0.00004 0.0021 0.0005 0.0003 0.0023

p̂1,m2

ε̂2 0.3893 0.7148 0.2098 0.5744 0.6034

ε̂3 0.0957 0.1599 0.1695 0.2490 0.1090

C 0.00001 0.0042 0.0005 0.0003 0.0018

6. The Doubly Modified Poisson Distribution
(Vranić/Matković 1965)

A different approach to modify the standard Poisson distribution has been sug-

gested by Vranić/Matković (1965a,b). The authors analyzed Croatian data from

two corpora, each consisting of several literary works and a number of newspa-

per articles. The data of one of the two samples are represented in Table 2.17.

Table 2.17: Word Length Frequencies for Croato-Serbian Text

Segments (Vranić/Matković 1965)

i fi pi

1 13738 0.3420

2 12000 0.2988

3 8776 0.2185

4 4234 0.1054

5 1103 0.0275

6 253 0.0063

7 47 0.0012

8 13 0.0003

9 3 0.0001

In Table 2.17, fi denotes the absolute and pi the relative frequencies of i-
syllable words..
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Referring to the work of Fucks, and testing if their data follow a 1-displaced

Poisson distribution, as suggested by Fucks, Vranić/Matković (1965b: 187)

observed a clear “discrepancy from the Poisson distribution in monosyllabic

and disyllabic words”, at the same time seeing “indications of conformity in

the distribution of three-syllable, four-syllable, and polysyllabic words.” The

corresponding data are represented in Figure 2.12.

1 2 3 4 5 6 7 8

Syllables per word
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Figure 2.12: Fitting the 1-Displaced Poisson Distribution to

Croato-Serbian Text Segments (Vranić/Matković

1965a,b)

We need not concentrate here on questions of the particular data structure.

Rather, it is of methodological interest to see how the authors dealt with the

data. Guided by the conclusion (supported by the graphical representation of

Figure 2.12), the authors tested if the words of length i ≥ 3, taken as a separate

sample, follow the Poisson distribution. Calculating the corresponding χ2 val-

ues, they reduced the whole sample of the remaining 14429 items to an artificial

sample of 1000 items, retaining the proportions of the original data set. The rea-

son for this reduction is likely to be the linear rise of χ2 values with increasing

sample size (see above, p. 23). As a result, the authors conclude “that three- and

polysyllabic words in Croato-Serbian roughly follow the Poisson distribution”

(ibd., 189).

In fact, a re-analysis shows that for fitting the Poisson distribution to the

original sample (N = 40167), one obtains a rather bad discrepancy coefficient

ofC = 0.0206, whereas for that portion of words with length i ≥ 3 one obtains

C = 0.0085. Though convincing at first sight, the question remains why the

goodness of the Poisson distribution has not been tested for that portion of

words with length i ≥ 2; curiously enough, the result is even better with C =
0.0047. Yet, obviously (mis-)led by the optical impression, Vranić/Matković

(1965b: 194) concentrate on a modification of the first two classes, suggesting

a procedure which basically implies a double modified Poisson distribution.

Referring to the approaches discussed by Fucks and Bartkowiakowa/Gleich-
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gewicht (see above), Vranić/Matković suggest the introduction of particular

weights, which, according to their proposal, are obtained by way of the following

method.

Taking the relative frequency of p1 = 0.342, one obtains λ = 1.079 as that

parameter of the standard (i.e., unweighted) Poisson distribution, from which

v1 = 0.340 results as the theoretical relative frequency:

vi =
λi−1e−λ

(i− 1)!
, i = 1, 2, . . . (2.31)

Furthermore, for λ = 1.079, one obtains v2 = 0.367, and the corresponding

values for the remaining frequencies (v3 . . . vn). Given the observation that the

empirical values follow a Poisson distribution for i ≥ 3, the authors consider it

to be necessary and sufficient to represent monosyllabic and disyllabic words

through superposition by way of introducing two weighting parameters a1 and

a2 modifying the theoretical frequencies of v1 and v2, as obtained from (2.31),

thus arriving at the weighted theoretical frequencies p′1 and p′2 by assuming:

p′1 = a1 · v1 p′2 = a1 · v2 + a2 · v1 .
Given the condition that p′1 + p′2 = p1 + p2 = 0.3420 + 0.2988 = 0.6408,

one has to seek the minimum for formula (2.32):

F (a1, a2) = (p′1 − a1 · v1)2 + (p′2 − a1 · v2 − a2 · v1)−
− 2β · (v1 + v2 − 0.6408)

(2.32)

Solving the resulting set of equations, one thus obtains the two weights

a1 = 1.006 and a2 = −0.2066; consequently,

p′1 = 1.006 · v1 = 1.006 · 0.340 = 0.342
p′2 = 1.006 · v2 + a2 · v1 = 1.006 · 0.367 − 0.2066 · 0.340 = 0.2988 .

We thus obtain the weighted theoretical values NPi of the doubly modified

Poisson distribution, represented in Table 2.18.

As a re-analysis shows, the results must be regarded to be excellent, statis-

tically confirmed by a discrepancy coefficient value of C = 0.0030 (χ2
df=5 =

122.18). Still, there remain at least two major theoretical problems:

1. No interpretation is given as to why the weighting modification is necessary:

is this a matter of the specific data structure, is this specific for Croatian

language products?

2. Is it reasonable to stick to the Poisson distribution, though in a modified

version of it, as a theoretical model, if almost two thirds of the data sample

(f1 + f2 ≈ 64%) do not seem to follow it?

3. As was mentioned above, the whole sample follows a Poisson distribution

not only for i ≥ 3, but already for i ≥ 2: consequently, in this case, only the

first class would have to be modified, if it all.
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Table 2.18: Fitting the Doubly Modified Poisson Distribution

to Croato-Serbian Text Segments (Vranić/Matković

1965a,b)

i fi NPi

1 13738 13738.00

2 12000 12000.00

3 8776 8599.81

4 4234 4450.40

5 1103 1151.54

6 253 198.64

7 47 25.70

8 13 2.66

9 3 0.23

7. The Negative Binomial Distribution (Grotjahn 1982)

An important step in the discussion of possibly adequate distribution models

for word length frequencies was Grotjahn’s (1982) contribution. As can be seen

above, apart from Elderton’s early attempt to favor the geometric distribution,

the whole discussion had focused for almost three decades on the Poisson dis-

tribution; various attempts had been undertaken to modify the Poisson distribu-

tion, due to the fact that the linguistic data under study could not be theoretically

modelled by recourse to it. As the re-analyses presented in the preceding chap-

ters have shown, neither the standard Poisson distribution nor any of its straight

forward modifications can be considered to be an adequate model. Still, all the

attempts discussed above, from the late 1950s until the 1980s, in one way or

another, stuck to the conviction that the Poisson distribution is the one relevant

model which “only” has to be modified, depending on the specific structure of

linguistic data.

Grotjahn, in his attempt, opened the way for new perspectives: he not only

showed that the Poisson model per se might not be an adequate model; fur-

thermore, he initiated a discussion concentrating on the question whether one

overall model could be sufficient when dealing with word length frequencies

of different origin.

Taking into consideration that the 1-displaced Poisson model, basically sug-

gested by Fucks and often, though mistakenly, called the “Fucks distribution”,

was still considered to be the standard model, it seems to be necessary to put

some of Grotjahn’s introductory remarks into the right light.
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As most scholars at that time would do – and, in fact, as most scholars would

do still today –, Grotjahn (1982: 46ff.), at the beginning of his ruminations,

referred to the so-called “Fucks distribution”. According to him, “the Fucks

distribution has to be regarded a special case of a displaced Poisson distribution”

(ibd., 46). As was shown above, this statement is correct only if one considers the

1-displaced Poisson distribution to be the “Fucks distribution”; in fact, however,

as was shown above, the 1-displaced Fucks distribution is not more and not less

than a special case of the generalized Fucks-Poisson distribution.

With this in mind, Grotjahn’s own suggestions appear in a somewhat more

adequate light. Given a random variableY , representing the number of syllables

per word (which may have the values k = a, a+ 1, . . ., with a ∈ N0), we have

formula (2.33) for the displaced Poisson distribution, resulting in the standard

Poisson distribution for a = 0:

P (Y = k) =
e−λλk−a

(k − a)!
, k = a, a+ 1, ... a ∈ N

0 . (2.33)

As a starting point, Grotjahn analyzed seven letters by Goethe, written in 1782,

and tested in how far the (1-displaced) Poisson distribution would prove to be an

adequate model. As to the statistical testing of the findings, Grotjahn (1982: 52)

suggested calculating not only χ2 values, or their transformation into z values,

but also the deviation of the empirical dispersion index (d) from its theoretical

expectation (δ). As was pointed out above (cf. p. 48), the Poisson distribution

can be an adequate model only in case d ≈ 1.

However, of the concrete data analyzed by Grotjahn, only some satisfied

this condition; others clearly did not, the value of d ranging from 1.01 ≤ d ≤
1.32 for the seven Goethe letters under study. Given this observation, Grotjahn

arrived at two important conclusions: the first consequence is that “the displaced

Poisson distribution hardly can be regarded to be an adequate model for the word

length frequency distribution in German” (ibd., 55). And his second conclusion

is even more important, generally stating that the Poisson model “cannot be a

general law for the formation of words from syllables” (ibd., 47).

In a way, this conclusion paved the way for a new line of research. After

decades of concentration on the Poisson distribution, Grotjahn was able to

prove that this model alone cannot be adequate for a general theory of word

length distribution. On the basis of this insight, Grotjahn further elaborated

his ruminations. Replacing the Poisson parameter λ in (2.33) by θ − a, and

obtaining (2.34)

P (Y = k) =
e−(θ−a)(θ − a)k−a

(k − a)!
, k = a, a+ 1, ... a ∈ N0, (2.34)

Grotjahn’s (1982: 55) reason for this modification was as follows: a crucial

implication of the Poisson distribution is the independence of individual occur-
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rences. Although every single word thus may well follow a Poisson distribution,

this assumption does not necessarily imply the premise that the probability is

one and the same for all words; rather, it depends on factors such as (linguistic)

context, theme, etc. In other words, Grotjahn further assumed that parameter θ
itself is likely to be a random variable.

Now, given one follows this (reasonable) assumption, the next question is

which theoretical model might be relevant for θ. Grotjahn (1982: 56ff.) ten-

tatively assumed the gamma distribution to be adequate. Thus, the so-called

negative binomial distribution (2.35) (also known as ‘composed Poisson’ or

‘multiple Poisson’ distribution) in its a-displaced form is obtained, as a result

of this super-imposition of two distributions:

f(x; k; p) =

(
k + x− a− 1

x− a

)
pkqx−a, x = a, a+ 1, ... a ∈ N0

(2.35)

As can be seen, for k = 1 and a = 1, one obtains the 1-displaced geometric

distribution (2.2), earlier discussed by Elderton (1949) as a possible model (see

above, p. 20).

f(x) = p · qx−1, x = 1, 2, . . . (2.36)

In fact, the negative binomial distribution had been discussed before by Brain-

erd (1971, 1975: 240ff.). Analyzing samples from various literary works written

in English, Brainerd first tested the 1-displaced Poisson distribution and found

that it “yields a poor fit in general for the works considered” (Brainerd 1975:

241). The 1-displaced Poisson distribution turned out to be an acceptable model

only in the case of short passages, whereas in general, his data indicated “that

a reasonable case can be made for the hypothesis that the frequencies of syl-

lables per word follow the negative binomial distribution” (ibd., 248). In some

cases, however (in fact those with k → 1), also the geometric distribution (2.2)

suggested by Elderton (1949) turned out to be adequate.

The negative binomial distribution does not only converge to the geometric

distribution, however; under particular circumstances, it converges to the Pois-

son distribution: namely, if k → ∞, q → 0, k · q → a (cf. Wimmer/Altmann

1999: 454). Therefore, as Grotjahn (1982: 71f.) rightly stated, the negative

binomial distribution, too, is apt to model frequency distributions with d ≈ 1.

With his approach, Grotjahn thus additionally succeeded in integrating earlier

research, both on the geometric and the Poisson distributions, which had failed to

be adequate as an overall valid model. In this context, it is of particular interest,

therefore, that the negative binomial distribution is a theoretically adequate
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model also for data with d > 1. Given the theoretical values for σ2 and µ

σ2 =
k · q2
p2 +

k · p
p

µ =
k · q
p

,

it can easily be shown that for the negative binomial distribution,

δ = 1 +
1 − p

p
> 1 . (2.37)

As Grotjahn (1982: 61) concludes, the negative binomial distribution there-

fore should be taken into account for empirical distributions with d > 1. A com-

parison of German corpus data from Meier’s (1967) Deutsche Sprachstatistik

clearly proves Grotjahn’s argument to be reasonable. The data are reproduced

in Table 2.19, which contains the theoretical values both for the Poisson and the

negative binomial distributions. In addition to the χ2 values, given by Grotjahn,

Table 2.19 also contains the values of the discrepancy coefficient C discussed

above (cf. p. 23), which are calculated anew, here.

Table 2.19: Fitting the Negative Binomial and Poisson Distribu-

tions to German Data from Meier’s Corpus (Grotjahn

1982)

neg. binom. d. Poisson d.

x fx NPx NPx

1 25940 25827.1 22357.1

2 14113 14174.9 17994.8

3 5567 6144.5 7241.8

4 2973 2427.2 1942.9

5 1057 912.1 391.0

6 264 332.2 62.9

7 74 118.5 8.4

8 10 41.6 1.0

≥ 9 2 21.9 0.1

N = 50000 χ2 = 273.72 χ2 = 4752.17
C = 0.005 C = 0.095

As can be seen, the negative binomial distribution yields significantly better

results as compared to the Poisson model. The results are graphically repre-

sented in Figure 2.13.
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Figure 2.13: Observed and Expected Word Length Frequencies

for Meier’s German Corpus (Grotjahn 1982)

Concluding, it seems important to emphasize that Grotjahn’s (1982: 74)

overall advice was that the negative binomial distribution should be taken into

account as one possible model for word length frequencies, not as the only

general model. Still, it is tempting to see in how far the negative binomial

distribution is able to model the data of nine languages, given by Fucks (cf.

Table 2.9, p. 41). Table 2.20 represents the corresponding results, including the

estimated values for the parameters k and p.

Table 2.20: Fitting the Negative Binomial Distribution to Fucks’

Data From Nine Languages

English German Esperanto Arabic Greek

k̂ 1.04 3.62 597.59 9.89 5.09

p̂ 0.72 0.85 0.99 0.90 0.82

C 0.0026 0.0019 0.0026 0.1503 0.0078

Japanese Russian Latin Turkish

k̂ 4.79 7.71 12.47 13.11

p̂ 0.81 0.86 0.90 0.90

C 0.0036 0.0078 0.0330 0.0440
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From Table 2.20, two things can be nicely seen:

1. For Esperanto – the only ‘language’ with a really convincing fitting result

of the Poisson distribution (cf. Table 2.10, p. 43) – both parameters behave

as predicted: k → ∞, and q = (1 − p) → 0.

2. Particularly from the results for Arabian, Latin, and Turkish (all with C >
0.02), it is evident that the negative binomial distribution indeed cannot be

an overall adequate model.

In so far, historically speaking, Grotjahn’s (1982: 73) final conclusion that for

German texts, the negative binomial distribution leads to better results almost

without exception, is not as important as the general insight of his study: namely,

that instead of looking for one general model one should rather try to concentrate

on a variety of distributions which are able to represent a valid “law of word

formation from syllables”.

8. The Poisson-Uniform Distribution:
Kromer (2001/02)

Based on Grotjahn’s (1982) observation as to frequent discrepancies between

empirical data and theoretical models thereof, Grotjahn/Altmann (1993) gen-

eralized the importance of this finding by methodologically reflecting principal

problems of word length studies. Their discussion is of unchanged importance,

still today, since many more recent studies in this field do not seem to pay

sufficient attention to the ideas expressed almost a decade ago.

Before discussing these important reflections, one more model should be

discussed, however, to which attention has recently been directed by Kromer

(2001a,b,c; 2002). In this case, we are concerned with the Poisson-uniform

distribution, also called Poisson-rectangular distribution (cf. Wimmer/Altmann

1999: 524f.). Whereas Grotjahn’s combination of the Poisson distribution with

a second model (i.e., the gamma distribution), resulted in a specific distribution

in its own right (namely, the negative binomial distribution), this is not the case

with Kromer’s combination of the Poisson distribution (2.8) with the uniform

(rectangular) distribution:

f(x) =
1

b− a
, a ≤ x ≤ b . (2.38)

As a result of combining the rectangular distribution (2.38) with the Poisson

distribution (2.8), one obtains the Poisson uniform distribution:

Px = (b− a)−1



e−a
x∑

j=0

aj

j!
− e−b

x∑

j=0

bj

j!



 , x = 0, 1, 2, . . . (2.39)
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Here, a necessary condition is that b > a ≥ 0. In his approach, Kromer

(2001a) derived the Poisson-uniform distribution along a different theoretical

way, which need not be discussed here in detail. With regard to formula (2.39),

this results in a replacement of parameters a and b by (λ1 − 1) and (λ2-1), thus

leading to the following 1-displaced form (with the support x = 1, 2, 3, . . .):

Px =
1

λ2 − λ1



e−(λ1−1)
x∑

j=1

(λ1 − 1)j−1

(j − 1)!
− e−(λ2−1)

x∑

j=1

(λ2 − 1)j−1

(j − 1)!



 .

(2.39a)

Kromer then defined the mean of the distribution to be

λ0 =
λ1 + λ2

2
. (2.40)

A simple transformation of this equation leads to λ2 = 2 · λ0 − λ1. As a

result, one thus obtains λ2 as depending on λ1 which remains to be estimated.

With regard to this question, Kromer (2001a: 95) discusses two methods: the

method of moments, and the method of χ2 minimization.

Since, as a result, Kromer does not favor the method of moments, he unfor-

tunately does not deem the system of equations necessary to arrive at a solution

for λ1. It would be too much, here, to completely derive the two relevant equa-

tions anew. It may suffice therefore to say that the first equation can easily be

derived from (2.40); as to the second necessary equation, Kromer (2001a: 95)

refers to the second initial moments of the empirical (m′
2) and the theoretical

(µ′2) distributions (cf. page 52):

m′
2 =

1

N

∑

x

x2 · fx µ′2 =
∑

x

x2 · Px

One thus obtains the following system of equations:

(a) 0 = λ1 + λ2 − 2x̄

(b) 0 = 6m′
2 − 2λ2

1 − 3λ1 − 2λ2
2 − 3λ2 − 2λ1λ2 + 6

In empirically testing the appropriateness of his model, Kromer (2001a) used

data from Best’s (1997) study on German-language journalistic texts from an

Austrian journal. Best, in turn, had argued in favor of the negative binomial

distribution discussed above, as an adequate model.

The results obtained for these data need not be presented here, since they

can easily be taken from the table given by Kromer (2001a: 93). It is more

important to state that Kromer (2001a: 95), as a result of his analyses, found

“that the method of moments leads to an unsatisfactory approximation of the
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empirical distribution by the theoretical one owing to the strong dependence of

the second moment of the distribution on random factors”. Kromer therefore

suggested not to use this procedure, and to prefer the method ofχ2 minimization.

In the case of this method, we are concerned with a merely numerical so-

lution, fitting λ1 by minimizing the χ2 value. Instead of presenting the results

of Kromer’s fittings, it might be tempting to re-analyze once again Fucks’ data

(cf. Table 2.9). These data have been repeatedly analyzed above, among others

with regard to the negative binomial distribution (cf. Table 2.20, p. 65). Since

the negative binomial distribution had proven not to be an adequate model for

Latin, Arabic, and Turkish, it is interesting to see the results one obtains with

Kromer’s model.

Table 2.21 presents the corresponding results. In addition to the values

for λ̂1 and λ̂2, obtained according to the two methods described above, Ta-

ble 2.21 also contains the results one obtains for the 1-displaced Poisson-

uniform distribution, using iterative methods incorporating relevant special soft-

ware (Altmann-Fitter, version 2.1, 2000).

It can clearly be seen that for the 1-displaced Poisson-uniform distribution

(with b > a ≥ 0), there are solutions for all data sets, although for four of

the nine languages, the results cannot be called satisfying (C > 0.02): these

four languages are English, Arabic, Latin, and Turkish. As compared to this, the

results for Kromer’s modification are better in all cases. Additionally, they prove

to be interesting in a different aspect, depending on the manner of estimating

λ1 (and, consequently, of λ2). Using the method of moments, it turns out that

in four of the nine cases (Esperanto, Arabic, Latin, and Turkish), no acceptable

solutions are obtained. However, for these four cases, too, acceptable results

are obtained with the χ2 minimization method. Interestingly the values for λ1

and λ2, obtained with this method, are almost identical, differing only after the

fifth or higher decimal (thus, λ1 ≈ λ2 ≈ λ0).

Now, what is the reason for no satisfying results being obtained, according

to the method of moments? Let us once again try to explain this referring

to the dispersion quotient δ discussed above (cf. p. 47). As can be seen above,

δ = V ar(X)/[E(X)−1]. Now, given that, for Kromer’s version of the Poisson-

uniform distribution in its 1-displaced form, we have the theoretical first and

second moments:

µ1 =
(λ1 − 1) + (λ2 − 1)

2
+ 1 =

λ1 + λ2

2

µ2 =
[(λ1 − 1) − (λ2 − 1)]2

12
+

(λ1 − 1) + (λ2 − 1)

2

=
(λ1 − λ2)2

12
+
λ1 + λ2 − 2

2
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Table 2.21: Fitting the 1-Displaced Poisson-Uniform Distribu-

tion to Fucks’ Data From Nine Languages

English German Esperanto Arabic Greek

b > a ≥ 0

â 0.0497 0.1497 0.4675 0.6101 0.3197

b̂ 0.8148 1.1235 1.3432 1.6686 1.9199

C 0.0288 0.0029 0.0068 0.1409 0.0065

x̄,m′
2

λ̂1 0.7178 1.0567 ∅ ∅ 1.2587

λ̂2 2.0950 2.2100 ∅ ∅ 2.9625

C 0.0028 0.0027 – – 0.0047

χ2-min.

λ̂1 0.7528 1.0904 1.8971 2.1032 1.1556

λ̂2 2.0600 2.1763 1.8971 2.1032 3.0656

C 0.0021 0.0024 0.0023 0.1071 0.0023

d > 1 X X – – X

Japanese Russian Latin Turkish

b > a ≥ 0

â 0.3457 0.3720 0.8373 0.8635

b̂ 1.9401 2,0900 1.9942 2.0859

C 0.0054 0.0054 0.0282 0.0391

x̄,m′
2

λ̂1 1.2451 1.4619 ∅ ∅

λ̂2 3.0199 2.9918 ∅ ∅

C 0.0053 0.0060 – –

χ2-min.

λ̂1 1.3122 1.3088 2.3894 2.4588

λ̂2 2.9528 3.1449 2.3894 2.4588

C 0.0037 0.0037 0.0166 0.0207

d > 1 X X – –
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As to the theoretical dispersion quotient δ, we thus obtain the following

equation:

δ =
V ar(X)

E(X) − 1
=

(λ1 − λ2)2

12
+
λ1 + λ2 − 2

2
λ1 + λ2

2
− 1

=

(λ1 − λ2)2 + 6λ1 + 6λ2 − 12

12
λ1 + λ2 − 2

2

=
(λ1 − λ2)2 + 6(λ1 + λ2 − 2)

6(λ1 + λ2 − 2)

=
(λ1 − λ2)2

6 (λ1 + λ2 − 2)
+ 1 .

Because (λ1−λ2)2 is positive, and because λ1 > 1 and λ2 > 1 by definition,

(λ1 + λ2 − 2) must be positive, as well; therefore, the quotient

Qδ =
(λ1 − λ2)2

6 (λ1 + λ2 − 2)
> 0 (2.41)

must be positive as well. Consequently, for the 1-displaced Poisson-uniform

distribution to be fitted with the method of moments, a necessary condition is

that the dispersion quotient is d > 1. Empirically, this is proven by the results

represented in Table 2.21: here, for those cases with d ≤ 1, fitting Kromer’s

modification of the Poisson-uniform distribution with the method of moments

fails.

Additionally, this circumstance explains why in these cases, we have almost

identical values for λ1 and λ2 (i.e., λ1 ≈ λ2): As can be shown, the dispersion

quotient of the 1-displaced Poisson-uniform distribution is δ = 1, only in the

case that the quotientQδ = 0 – cf. equation (2.41), as to this point. This however,

is the case only if λ1 = λ2. Actually, this explains Kromer’s assumption that

for λ1 = λ2, the 1-displaced Poisson-uniform “degenerates” to the 1-displaced

Poisson distribution, where, by definition, δ = 1.13

According to Kromer (2001a: 96, 2001b: 74), the model proposed by him

“degenerates” into the Poisson (Čebanov-Fucks) distribution with λ1 = λ0

(and correspondingly λ2 = λ0). In principle, this assumption is correct; strictly

speaking, however, it would be more correct to say that for λ1
∼= λ2, the

1-displaced Poisson-uniform distribution can be approximated by the Pois-

son distribution. For the sake of clarity, the approximation of the 1-displaced

13 From this perspective, it is no wonder that the C values obtained for the Poisson-uniform distribution

by way of the χ2 minimization method are almost the same, or even identical to those obtained for the

Poisson distribution (cf. Table 2.10, p. 43).
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Poisson-uniform distribution suggested by Kromer (personal communication)

shall be demonstrated here; it is relevant for those cases when parameter a con-

verges with parameter b in equation (2.39). In these cases, when b = a + ε
with ε → 0, we first replace b with a + ε in equation (2.39), thus obtaining

formula (2.39’):

Px =
1

ε



e−a
x∑

j=0

aj

j!
− e−a−ε

x∑

j=0

(a+ ε)j

j!



 . (2.39’)

In the next step, the binomial expression (a + ε)j from equation (2.39’) is

replaced with its first two terms, i.e.,

(a+ ε)j =
(
a
(

1 +
ε

a

))j
= aj

(
1 +

ε

a

)j
= aj

(
1 +

ε

a
· j + . . .

)
≈

≈ aj
(
1 + ε · j · a−1

)
= aj

(
1 +

ε · j
a

)
= aj + aj−1ε · j,

thus obtaining (2.39”)

Px =
1

ε




e
−a

x∑

j=0

aj

j!
− e−a · e−ε




x∑

j=0

aj

j!
+

x∑

j=0

aj−1εj

j!








 . (2.39”)

Finally, function e−ε in equation (2.39”) is approximated by the first two

terms of the Taylor series of this function, resulting in 1 − ε, thus stepwise

receiving the ordinary Poisson distribution:

Px = e−a




x∑

j=0

aj

j!
−

x∑

j=0

j · aj−1

j!



 = e−aa
x

x!
. (2.39”’)

Yet, we are concerned here with an approximation of the Poisson-uniform

distribution, not with its convergence to the Poisson distribution, since λ1 = λ2

would result in zero for the first part of equation (2.39a), and the second part

of (2.39a) would make no sense either, also resulting in 0 (cf. p. 67).

Anyway, Kromer’s (2001c) further observation – based on the results ob-

tained by the χ2 minimization – saying that there seems to be a direct depen-

dence of λ1 on λ0, is of utmost importance and deserves further attention. In

fact, in addition to his assumption that this is the case for homogeneous texts

of a given genre only, a re-analysis of Fucks’ data (cf. p. 41) as to this question

corroborates and extends Kromer’s findings; although these data are based on

mixed corpora of the languages under study, there is a clear linear dependence

of λ1 on λ0, for these data as well (R2 = 0.91).
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In this respect, another assumption of Kromer’s might turn out to be impor-

tant, here. This assumption is as plausible and as far-reaching, since Kromer

postulates two invariant parameters (I and α, in his terminology) to be at

work in the generation of word length frequencies. According to Kromer,

the first of these two parameters (I) is supposed to be an invariant parame-

ter for the given language, being defined as I = (λ0 − 1) · (λ1 − λ1min).

It is important to note that parameter λ1min should not be confounded here

with the result of the χ2 minimization described above; rather, it is the lower

limit of λ1. On the basis of his analyses, Kromer (2001b,c, 2002) assumes

λ1min to be 0.5, approximately. The second parameter α can be derived from

the equation λ1 = α · λ1min + (1 − α) · λ0. Consequently, it is defined as

α = (λ0 − λ1)/(λ0 − λ1min).

According to Kromer, both parameters (I and α) allow for a direct lin-

guistic interpretation. Parameter I , according to him, expresses something like

the specifics of a given language (i.e., the degree of a language’s syntheticity

(Kromer 2001c). As opposed to this, parameter α characterizes the degree of

completion of synergetic processes optimizing the code of the given language.

According to Kromer (2001c), α ∈ (0, 1) for real texts, with α ≈ 0.3− 0.6 for

simple genres (such as letters or children’s literature), and α ≈ 0.8 for more

complex genres (such as journalistic or scientific texts).

Unfortunately, most of the above-mentioned papers (Kromer 2001b,c; 2002)

have the status of abstracts, rather than of complete papers; as a consequence,

only scarce empirical data are presented which might prove the claims brought

forth on a broader empirical basis. In summary, one can thus first of all say

that Kromer’s modification of the Poisson-uniform distribution, as well as the

original Poisson-uniform distribution, turns out to be a model which has thus

proven its adequacy for linguistic material from various languages. Particularly

Kromer’s further hope to find language- and text-specific invariants deserves

further study. If his assumption should bear closer examination on a broader

empirical basis, this might as well explain why we are concerned here with

a mixture of two distributions. However, one must ask the question, why it is

only the rectangular distribution which comes into play here, as one of two

components. In other words: Wouldn’t it be more reasonable to look for a

model which by way of additional parameters, or by way of parameters taking

extreme values (such as 0, 1, or ∞) allows for transitions between different

distribution models, some of them being special cases, or generalizations, of

some superordinate model? Strangely enough, it is just the Poisson-uniform

distribution, which converges to almost no other distribution, not even to the

Poisson distribution, as can be seen above (for details, cf. Wimmer/Altmann

1999: 524).

Ultimately, this observation leads us back to the conclusion drawn at the end

of the last chapter, when the necessity to discuss the problems of word length
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studies from a methodological point of view was mentioned. This discussion

was initiated by Grotjahn and Altmann as early as in 1993, and it seems impor-

tant to call to mind the most important arguments brought forth some ten years

ago.

9. Theoretical and Methodological Reflections:
Grotjahn/Altmann (1993)

This is not to say that no attention has been paid to the individual points raised

by Grotjahn and Altmann. Yet, only recently systematic studies have been un-

dertaken to solve just the methodological problems by way of empirical studies.

It would lead too far, and in fact be redundant, to repeat the authors’ central

arguments here. Nevertheless, most of the ideas discussed – Grotjahn and Alt-

mann combined them in six groups of practical and theoretical problems – are

of unchanged importance for contemporary word length studies, which makes

it reasonable to summarize at least the most important points, and comment on

them from a contemporary point of view.

a. The problem of the unit of measurement.– As to this question, it turns out

to be of importance what Ferdinand de Saussure stated about a century ago,

namely, that there are no positive facts in language. In other words: There

can be no a priori decision as to what a word is, or in what units word

length can be measured. Meanwhile, in contemporary theories of science,

linguistics is no exception to the rule: there is hardly any science which would

not acknowledge, to one degree or another, that it has to define its object,

first, and that constructive processes are at work in doing so. The relevant

thing here is that measuring is (made) possible, as an important thing in the

construction of theory. As Grotjahn/Altmann (1993: 142) state with regard

to word length, there are three basic types of measurement which can be

distinguished: graphic (e.g. letters), phonetic (sounds, phonemes, syllables,

etc.), and semantic (morphemes). And, as a consequence, it is obvious “that

the choice of the unit of measurement strongly effects the model of word

length to be constructed” (ibd., 143).

What has not yet been studied is whether there are particular dependencies

between the results obtained on the basis of different measurement units; it

goes without saying that, if they exist, they are highly likely to be language-

specific.

Also, it should be noted that this problem does not only concern the unit

of measurement, but also the object under study: the word. It is not even

the problem of compound words, abbreviation and acronyms, or numbers

and digits, which comes into play here, or the distinction between word

forms and lexemes (lemmas) – rather it is the decision whether a word is to

be defined on a graphemic, orthographic-graphemic, or phonological level.
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Defining not only the measurement unit, but the unit under investigation

itself, we are thus faced with the very same problems, only on a different

(linguistic, or meta-linguistic) level.

b. The population problem.– As Grotjahn/Altmann (1993: 143ff.) rightly state,

the result can be expected to be different, depending on whether the material

under study is taken from a dictionary, from a frequency dictionary, or from

texts. On the one hand, when one is concerned with “ordinary” dictionaries,

one has to be aware of the fact that attention is paid neither to frequency nor

to the frequency of particular word forms; on the other hand, in the case of

frequency dictionaries, the question is what kind of linguistics material has

been used to establish the frequencies. And, as far as a text is considered to

be the basic unit of study, one must ask what a ‘text’ is: is it a chapter of a

novel, or a book composed of several chapters, or the complete novel?

Again, as to these questions, there are hardly any systematic studies which

would aim at a comparison of results obtained on an empirical basis. More

often than not, letters as a specific text type have been considered to be “pro-

totypical” texts, optimally representing language due to the interweaving of

oral and written components. However, there are some dozens of different

types of letters, which can be proven to follow different rules, and which

even more clearly differ from other text types.

One is thus concerned, in one way or another, with the problem of data

homogeneity: therefore, one should not only keep apart dictionaries (of var-

ious kinds) on the one hand, and texts, on the other – rather, one should

also make clear distinctions between complete ‘texts’, text segments (i.e.,

randomly chosen parts of texts), text mixtures (i.e., combinations of texts,

from the combination of two texts up to the level of complete corpora), and

text cumulations (i.e., that type of text, which is deliberately composed of

subsequent units).

c. The goodness-of-fit problem.– Whereas Grotjahn/Altmann (1993: 147ff.)

present an extensive discussion of this problem, it has become usual, by now,

to base any kind of test on Pearson’s χ2 test. And, since it is well-known

that differences are more likely to be significant for large samples (since the

χ2 value increases linearly with sample sizes), it has become the norm to

calculating the discrepancy coefficient C = χ2/N , with two conventional

deviation boundaries: 0.01 < C < 0.02 (“good fit”), and C < 0.01 (“very

good fit”). The crucial unsolved question, in this field, is not so much if these

boundaries are reasonable – in fact, there are some studies which use the

C < 0.05 boundary, otherwise not obtaining acceptable results. Rather, the

question is, what is a small text, and where does a large text start? And why

do we, in some cases, obtain significant C values when p(χ2) is significant,

too, but in other cases do not?
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d. The problem of the interrelationship of linguistic properties.– Under this

heading, Grotjahn/Altmann (1993: 150) analyzed a number of linguistic

properties interrelated with word length. What they have in mind are in-

tralinguistic factors which concern the synergetic organization of language,

and thus the interrelationship between word length factors such as size of the

dictionary, or the phoneme inventory of the given language, word frequency,

or sentence length in a given text (to name but a few examples).

The factors enumerated by Grotjahn/Altmann all contribute to what may be

called the boundary conditions of the scientific study of language. As soon

as the interest shifts from language, as a more or less abstract system, to the

object of some (real, fictitious, imagined, or even virtual) communicative

act, between some producer and some recipient, we are not concerned with

language, any more, but with text. Consequently, there are more factors to be

taken into account forming the boundary conditions, factors such as author-

specific, or genre-dependent conditions. Ultimately, we are on the borderline

here, between quantitative linguistics and quantitative text analysis, and the

additional factors are, indeed, more language-related than intralinguistic in

the strict sense of the word. However, these factors cannot be ignored, as soon

as running texts are taken as material; it might be useful, therefore, to extend

the problem area outlined by Grotjahn/Altmann and term it the problem of

language-related and text-related influence factors. It should be mentioned,

however, that very little is known about such factors, and systematic work

on this problem has only just begun.

e. The modelling problem.– As Grotjahn/Altmann (1993: 146f.) state, it is

very unlikely that one single model should be sufficient for the various types

of data involved. Rather one would, as they claim, “expect one specific

model for each data type” (ibd., 146). Grotjahn/Altmann mainly had in mind

the distinctions of different populations, as they were discussed above (i.e.

dictionary vs. frequency dictionary, vs. text, etc.); the expectation brought

forth by them, however, ultimately results in the possibility that there might

be single models for specific boundary conditions (i.e. for specific languages,

for texts of a given author written in a particular language, or for specific

text types in a given language, etc.).

The options discussed by Grotjahn/Altmann (1993) are relevant, still today,

and they can be categorized as follows: (i) find a single model for the data

under study; (ii) find a compound model, a convolution, or a mixture of

models, for the data under study. As can be seen, the aim may be different with

regard to the particular research object, and it may change from case to case;

what is of crucial relevance, then, is rather the question of interpretability

and explanation of data and their theoretical modelling.
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f. The problem of explanation.– As Grotjahn/Altmann (1993: 150f.) correctly

state, striving for explanation is the primary and ultimate aim of science.

Consequently, in order to obtain an explanation of the nature of word length,

one must discover the mechanism generating it, hereby taking into account

the necessary boundary conditions. Thus far, we cannot directly concentrate

on the study of particular boundary conditions, since we do not know enough

about the general system mechanism at work. Consequently, contemporary

research involves three different kinds of orientation: first, we have many

bottom-up oriented, partly in the form of ad-hoc solutions for particular

problems, partly in the form of inductive research; second, we have top-down

oriented, deductive research, aiming at the formulation of general laws and

models; and finally, we have much exploratory work, which may be called

abductive by nature, since it is characterized by constant hypothesis testing,

possibly resulting in a modification of higher-level hypotheses.

As to a possible way of achieving these goals, Grotjahn/Altmann (1993:

147) have suggested to pursue the “synergetic” approach of modelling. In

this framework, it is not necessary to know the probabilities of all individual

frequency classes; rather, it is sufficient to know the (relative) difference

between two neighboring classes, e.g.

D =
Px − Px−1

Px−1
, or D = Px − Px−1

and set up theories about D. Ultimately, this line of research has in fact

provided the most important research impulses in the 1990s, which shall be

discussed in detail below.

10. From the Synergetic Approach to a Unified Theory of
Linguistic Laws (Altmann/Grotjahn/Köhler/Wimmer)

In their 1994 contribution “Towards a theory of word length distribution”, Wim-

mer et al. regarded word length as a “part of several control cycles which main-

tain the self-organization in language” (ibd., 101). Generally assuming that the

distribution of word length in the lexicon and in texts follows a law, the authors

further claim that the “empirical distributions actually observed can be repre-

sented as specifications of this law according to the boundary and subsidiary

conditions which they are subject to in spite of the all-pervasive creativity of

speakers/writers” (ibd., 101).

In their search for relevant regularities in the organization of word length,

Wimmer et al. (1994: 101) then assume that the various word length classes

do not evolve independently of each other, thus obtaining the following basic

mechanism:

Px = g(x)Px−1 . (2.42)
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With regard to previous results from synergetic linguistics, particular re-

search on the so-called “Menzerath law”, modelling the regulation of the size

of (sub)systems by the size of the corresponding supersystems, Wimmer et al.

state that in elementary cases the function g(x) in (2.42) has the form

g(x) = ax−b . (2.43)

Based on these assumptions, Wimmer et al. (1994: 101ff.) distinguish three

levels, if one wants, as to the synergetic modelling of word length distribution:

(a) elementary form, (b) modification, and (c) complication.

(a) The most elementary, basic organization of a word length distribution

would follow the difference equation

Px+1 =
a

(x+ 1)b
Px , x = 0, 1, 2, . . . a, b > 0 . (2.44)

Depending on whether there are 0-syllable words or not (i.e., P0 = 0 or

P0 6= 0), one obtains one of the two following formulas (2.45) or (2.45a),

which are identical except for translation, i.e. either:

Px =
ax

(x!)b
P0 , x = 0, 1, 2, . . . a, b > 0 (2.45)

or, in 1-displaced form:

Px =
ax−1

(x− 1)!b
P1 , x = 1, 2, 3, . . . a, b > 0 , (2.45a)

This finally results in the so-called Conway-Maxwell-Poisson distribution

(cf. Wimmer et al. 1994: 102; Wimmer/Altmann 1999: 103), i.e.:

Px =
ax

(x!)b T0

, x = 0, 1, 2, . . . , a ≥ 0, b > 0, T0 =

∞∑

j=0

aj

(j!)b
(2.46)

with T0 as norming constant. This model was already discussed above, in its

1-displaced form (2.7), when discussing the Merkytė geometric distribution

(cf. p. 26). It has also been found to be an adequate model for word length

frequencies from a Slovenian frequency dictionary (Grzybek 2001).

(b) As to the second level of modelling (“first order extensions”), Wimmer

et al. (1994: 102) suggested to set parameter b = 1 in equation (2.43) and to

modify the proportionality function. After corresponding re-parametrizations,
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these modifications result in well-known distribution models. In 1994, Wimmer

et al. wrote that g(x)-functions like the following had been found:

Hyper-Poisson: g(x) =
a

(c+ x)

Hyper-Pascal: g(x) =
(a+ bx)

(c+ dx)

negative binomial: g(x) =
(a+ bx)

cx
.

This system of modifications was further elaborated by Wimmer/Altmann in

1996, and shall be presented in detail, below (cf. p. 81ff.).

(c) The third level of modelling is more complex: as Wimmer et al. (1994:

102f.) say, in these more complex models “it is not appropriate to take into

account only the neighboring class (x − 1). The set of word length classes is

organized as a whole, i.e., the class of length x is proportional to all other classes

of smaller length j(j = 1, 2, . . . , x).” This can be written as

Px =

x∑

j=1

h(j)Px−j .

Inserting the original proportionality function g(x) thus yields (2.47), ren-

dering (2.42) a special case of this more complex form:

Px = g(x)
x∑

j=1

h(j)Px−j . (2.47)

If one again chooses g(x) = a · x−b with b = 1, as in the case of the first

order extensions (b), this results in g(x) = a/x; if one furthermore defines

h(j) = j
∏

j – where
∏

j itself is a probability function of a variable J –, then

the probability Px fulfills the necessary conditions Px ≥ 0 and
∑

x Px = 1.

Now, different distributions may be inserted for
∏

j . Thus, inserting the Borel

distribution (cf. Wimmer/Altmann 1999: 50f.)

Px =
e−ax · xx−1 · xx−2

(x− 1)!
, x = 1, 2, 3, . . . 0 ≤ a < 1 (2.48)

for
∏

j in h(j) = j
∏

j , yields

Px =
a

x

x∑

j=1

e−bj (bj)j−1

(j − 1)!
Px−j . (2.49)
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The solution of this is a specific generalized Poisson distribution (GPD),

usually called Consul-Jain-Poisson distribution (cf. Wimmer/Altmann 1999:

93ff.):

P0 = e−a ,

Px =
a (a+ bx)x−1 e−(a+bx)

x!
, x = 1, 2, 3, . . .

(2.50)

It can easily be seen that for b = 0, the standard Poisson is a special case of the

GPD. The parametersa and b of the GPD are independent of each other; there are

a number of theoretical restrictions for them, which need not be discussed here in

detail (cf. Antić/Grzybek/Stadlober 2005a,b). Irrespective of these restrictions,

already Wimmer et al. (1994: 103) stated that the application of the GPD has

turned out to be especially promising, and, by way of an example, they referred

to the results of fitting the generalized Poisson distribution to the data of a

Turkish poem. These observations are supported by recent studies in which

Stadlober (2003) analyzed this distribution in detail and tested its adequacy for

linguistic data. Comparing the GPD with Fucks’ generalization of the Poisson

distribution (and its special cases), Stadlober demonstrated that the GPD is

extremely flexible, and therefore able to model heterogeneous linguistic data.

The flexibility is due to specific properties of the mean and the variance of the

GPD, which, in its one-displaced form, are:

µ = E(X) =
a+ 1 − b

1 − b
and

σ2 = V ar(X) =
a

(1 − b)3
.

Given these characteristics, we may easily compute δ, as was done in the

case of the generalized Fucks distribution and its special cases (see above):

δ =
V ar(X)

E(X) − 1
=

1

(1 − b)2
≥ 1

4
.

Thus, whereas the Poisson distribution turned out to be an adequate model for

empirical distributions with d ≈ 1, the 2-parameter Dacey-Poisson distribution

with d < 1, and the 3-parameter Fucks distribution with d ≥ 0.75, the GPD

proves to be an alternative model for empirical distributions withD ≥ 0.25 (cf.

Stadlober 2004). It is interesting to see, therefore, in how far the GPD is able

to model Fucks’ data from nine languages, represented in Table 2.9, repeatedly

analyzed above; the results taken from Stadlober (2003) are given in Table 2.22.

As can be seen, the results are good or even excellent in all cases; in fact, as

opposed to all other distributions discussed above, the Consul-Jain GPD is able

to model all data samples given by Fucks. It can also be seen from Table 2.22
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Table 2.22: Fitting the Generalized Poisson Distribution (GPD)

to Fucks’ Data From Nine Languages

English German Esperanto Arabic Greek

â 0.3448 0.5842 0.9198 1.4285 1.0063

b̂ 0.1515 0.0775 −0.0254 −0.2949 0.0939

C 0.0030 0.0019 0.0014 0.0121 0.0072

Japanese Russian Latin Turkish

â 1.0204 1.1395 1.4892 1.6295

b̂ 0.0990 0.0712 0.0719 −0.1170

C 0.0037 0.0078 0.0092 0.0053

that the empirical findings confirm the theoretical assumption that there is no

dependence between the parameters a and b – this makes it rather unlikely

that it might be possible to arrive at a direct interpretation of the results. In this

respect, i.e. as to an interpretation of the results, an even more important question

remains to be answered, already raised by Wimmer et al. (1994: 103), namely

what might be a linguistic justification for the use of the Borel distribution.

As to this problem, it seems however important to state that this is not a

problem specifically related to the GPD; rather, any mixture of distributions will

cause the very same problems. From this perspective, the crucial question as to

possible interpretation remains open for Fucks’ generalization too, however, as

well as for any other distribution implying weights, as long as no reason can be

given for the amount of the specific weights of the elements in the ε-spectrum.

In this respect, it is important that other distributions which imply no mixtures

can also be derived from (2.47). Thus, as Wimmer/Altmann (1996: 126ff.) have

shown in detail, the probability generating function of X in (2.47) is

G(t) = ea[H(t)−1], (2.51)

which leads to the so-called generalized Poisson distributions; the specific sol-

ution merely depends on the choice of H(t). Now, if one sets, for example,

H(t) = t, which is the probability generating function of the deterministic

distribution (Px = 1, Pc ∈ R), one obtains the Poisson distribution. And if

one sets a = −k ·ln p andH(t) = ln(1−qt)/ ln(1−q), which is the probability

generating function of the logarithmic distribution, then one obtains the negative

binomial distribution applied by Grotjahn. However, both distributions can also
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Figure 2.14: Modifications of Frequency Distributions

(Wimmer/Altmann 1996)

(and more easily) be derived directly from (2.42), as was already mentioned

above.

In their subsequent article on “The Theory of Word Length”, Wimmer/Alt-

mann (1996) then elaborated on their idea of different-order extensions and

modifications of the postulated basic mechanism and the basic organization

form resulting from it. Figure 2.14, taken from Wimmer/Altmann (1996: 114),

illustrates the complete schema.

It would go beyond the frame of the present article to discuss the various

extensions and modifications in detail here. In fact, Wimmer/Altmann (1996)

have not only discussed the various extensions, as shown in Figure 2.14; they

have also shown which concrete distributions result from these modifications.
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Furthermore, they have provided empirical evidence for them from various

analyses, involving different languages, authors, and texts, etc.

As a result, there seems to be increasing reason to assume that there is

indeed no unique overall distribution which might cover all linguistic phe-

nomena; rather, different distributions may be adequate with regard to the ma-

terial studied. This assumption has been corroborated by a lot of empirical

work on word length studies from the second half of the 1990s onwards. This

work is best documented in the ongoing “Göttingen Project”, managed by Best

(cf. http://wwwuser.gwdg.de/~kbest/projekt.htm), and his bibliogra-

phy (cf. Best 2001).

More often than not, the relevant analyses have been made with specialized

software, usually the Altmann Fitter. This is an interactive computer pro-

gram for fitting theoretical univariate discrete probability functions to empirical

frequency distributions; fitting starts with the common point estimates and is

optimized by way of iterative procedures.

There can be no doubt about the merits of such a program. Previous, deductive

approaches with particular a priori assumptions dominated studies on word

length, beginning with Elderton’s work. Now, the door is open for inductive

research, too, and the danger of arriving at ad-hoc solutions is more virulent than

ever before. What is important, therefore, at present, is an abductive approach

which, on the one hand, has theory-driven hypotheses at its background, but

which is open for empirical findings which might make it necessary to modify

the theoretical assumptions.

With this in mind, it seems worthwhile to apply this procedure once again

to the Fucks’ data from Table 2.9. Now, as opposed to previous approaches,

we will not only go the inductive way, but we will also see how the result(s)

obtained related to Wimmer/Altmann’s (1994, 1996) theoretical assumptions

outlined above.

Table 2.23 represents the results for that distribution which was able to model

the data of all nine languages, and which, in this sense, yielded the best fitting

values: we are concerned with the so-called hyper-Poisson distribution, which

has two parameters (a and b). In addition to the C values of the discrepancy

coefficient, the values for parameters a and b (as a result of the fitting) are given.

As can be seen, fitting results are really good in all cases. As to the data

analyzed, at least, the hyper-Poisson distribution should be taken into account

as an alternative model, in addition to the GDP, suggested by Stadlober (2003).

Comparing these two models, a great advantage of the GPD is the fact that

its reference value can be very easily calculated – this is not so convenient in

the case of the hyper-Poisson distribution. On the other hand, the generation

of the hyper-Poisson distribution does not involve any secondary distribution

to come into play; rather, it can be directly derived from equation (2.42). Let

us therefore discuss the hyper-Poisson distribution in terms of the suggestions
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Table 2.23: Fitting the Hyper-Poisson Distribution to Fucks’

Data From Nine Languages

English German Esperanto Arabic Greek

â 60.7124 1.1619 0.8462 0.5215 1.9095

b̂ 207.8074 2.1928 0.9115 0.2382 2.2565

C 0.0024 0.0028 0.0022 0.0068 0.0047

Japanese Russian Latin Turkish

â 1.8581 1.8461 1.2360 1.0875

b̂ 2.1247 1.9269 0.7904 0.5403

C 0.0069 0.0029 0.0152 0.0023

made by Wimmer et al. (1994), and Wimmer/Altmann (1996), respectively. As

was mentioned above, the hyper-Poisson distribution can be understood to be

a “first-order extension” of the basic organization form g(x) = a/xb: Setting

b = 1, in (2.43), the corresponding extension has the form g(x) = a/(c+ x),

which, after re-parametrization, leads to the hyper-Poisson distribution:

Px =
ax

1F1(1; b; a) · b(x)
, x = 0, 1, 2, . . . a ≥ 0, b > 0 . (2.52)

Here, 1F1(1; b; a) is the confluent hypergeometric function

1F1(1; b; a) =
∞∑

j=0

aj

b(j)
= 1 +

a1

b(1)
+

a2

b(2)
+ . . .

and

b(0) = 1 ,

b(j) = b (b+ 1) (b+ 2) . . . (b+ j − 1).

In its 1-displaced form, equation (2.52) takes the following shape:

Px =
ax−1

1F1(1; b; a) · b(x−1)
, x = 1, 2, 3, . . . a ≥ 0, b > 0 . (2.52a)

As can be seen, if b = 1 in equation (2.52) or (2.52a), respectively, we

obtain the ordinary Poisson distribution (2.8); also, what is relevant for the
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English data, if a → ∞, b → ∞, and a/b → q, one obtains the geometric

distribution (2.1), or (2.2), respectively.

To summarize, we can thus state that the synergetic approach as developed

by Wimmer et al. (1994) and Wimmer/Altmann (1996), has turned out to be ex-

tremely fruitful over the last years, and it continues to be so still today. Much em-

pirical research has thus been provided which is in agreement with the authors’

hypothesis as to a basic organization form from which, by way of extension and

modification14, further distribution models can be derived.

Most recently, Wimmer/Altmann (2005) have presented an approach which

provides an overall unification of linguistic hypotheses. Generally speaking, the

authors understand their contribution to be a logical extension of their synergetic

approach, unifying previous assumptions and empirical findings. The individual

hypotheses belonging to the proposed system have been set up earlier; they are

well-known from empirical research of the last decades, and they are partly

derived from different approaches.

In this approach, Wimmer/Altmann start by setting up a relative rate of change

saying what should be the first step when dealing with discrete variables. Ac-

cording to their suggestions, this rate of change should be based on the difference

∆x = x− (x− 1) = 1, and consequently has the general form

∆Px−1

Px−1
=
Px − Px−1

Px−1
. (2.53)

According to Wimmer/Altmann (2005), this results in the open equation

∆Px−1

Px−1
= a0 +

k1∑

i=1

a1i

(x− b1i)
c1 +

k2∑

i=1

a2i

(x− b2i)
c2 + ... (2.54)

Now, from this general formula (2.54), different families of distributions may

be derived, representing an overall model depending on the (linguistic) material

to be modelled, or, mathematically speaking, depending on the definition of the

parameters involved. If, for example, k1 = k2 = . . . = 1, b11 = b21 = . . . =
0, ci = i, ai1 = ai, i = 1, 2, . . ., then one obtains formula (2.55), given by

Wimmer/Altmann (2005):

Px =

(
1 + a0 +

a1

x
+
a2

x2 + . . .

)
Px−1 . (2.55)

As to concrete linguistic analyses, particularly relevant for word length stud-

ies, the most widely used form at present seems to be (2.56). As can be seen,

14 The authors have discussed further so-called “local” modifications, which need not be discussed here.

Specifically, Wimmer et al. (1999) have discussed the modification of probability distributions, applied

to Word Length Research, at some length.
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it is confined to the first four terms of formula (2.54), with k1 = k2 = . . . =
1, ci = 1, ai1 = ai, bi1 = bi, i = 1, 2, . . .. Many distributions can be derived

from (2.54), which have frequently been used in linguistics studies, and which

are thus united under one common roof:

Px =

(
1 + a0 +

a1

x− b1
+

a2

x− b2

)
Px−1 . (2.56)

Let us, in order to arrive at an end of the history and methodology of word

length studies, discuss the relevant distributions discussed before, on the back-

ground of these theoretical assumptions.

Thus, for example, with −1 < a0 < 0, ai = 0 for i = 1, 2, . . ., one obtains

from (2.56)

Px = (1 + a0)Px−1 (2.57)

resulting in the geometric distribution (with 1 + a0 = q, 0 < q < 1, p = 1− q)
in the form

Px = p · qx , x = 0, 1, 2, . . . (2.58)

Or, for −1 < a0 < 0, −a1 < 1 + a0 and a2 = b1 = b2 = 0, one obtains

from (2.56)

Px+1 =
1 + a0 + a1 + (1 + a0)x

x+ 1
Px . (2.59)

With k = (1 + a0 + a1)/(1 + a0), p = −a0, and q = 1− p this leads to the

negative binomial distribution:

Px =

(
k + x− 1

x

)
pkqx , x = 0, 1, 2, . . . (2.60)

Finally, inserting a2 = 0 in (2.56), one obtains

Px =
(1 + a0)(x− b1) + a1

x− b1
Px−1 (2.61)

from which the hyper-Poisson distribution (2.52) can be derived, with a0 =
−1, b1 = 1 − b, a1 = a ≥ 0, and b > 0.

It can thus be said that the general theoretical assumptions implied in the

synergetic approach has experienced strong empirical support. One may object

that this is only one of possible alternative models, only one theory among

others. However, thus far, we do not have any other, which is as theoretically

sound, and as empirically supported, as the one presented.

It seems to be a historical absurdity, therefore, that the methodological discus-

sion on word length studies, which was initiated by Grotjahn/Altmann (1993)
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about a decade ago, has often not been sufficiently taken account of in the rel-

evant research: more often than not, research has concentrated on word length

models for particular languages, not taking notice of the fact that boundary and

subsidiary conditions of individual text productions may be so strong that no

overall model is adequate, not even within a given language. On the other hand,

hardly any systematic studies have been undertaken to empirically study pos-

sible influencing factors, neither as to the data basis in general (i.e., text, text

segments, mixtures, etc.), nor as to specific questions such as authorship, text

type, etc.

Ultimately, the question, what may influence word length frequencies, may

be a bottomless pit – after all, any text production is an historically unique

event, the boundary conditions of which may never be reproduced, at least

not completely. Still, the question remains open if particular factors may be

detected, the relevance of which for the distribution of word length frequencies

may be proven.

This point definitely goes beyond a historical survey of word length studies;

rather, it directs our attention to research desires, as a result of the methodolog-

ical discussion above. As can be seen, the situation has remained unchanged:

in this respect, it will always be a matter of orientation, or of object definition,

if one attempts to find “local” solutions (on the basis of a clearly defined data

basis), or general solutions, attempting a general explanation of language or

text processing.
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2001c “Matematičeskaja model’ dliny slova na osnove raspredelenija Čebanova-Fuksa s ravno-
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1963 “Sur la distribution des formes verbales dans le français écrit”, in: Études de linguistique
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1977 Matematičeskaja lingvistika. Moskva. [German translation: Piotrowski, R.G.; Bektaev,

K.B.; Piotrowskaja, A.A.: Mathematische Linguistik. Bochum, 1985.]

Rothschild, Lord

1986 “The Distribution of English Dictionary Word Lengths”, in: Journal of Statistical Planning

and Inference, 14; 311–322.

Stadlober, Ernst

2003 “Poissonmodelle und Wortlängenhäufigkeiten.” [Ms.]
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