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Abstract

Concentrating on specifics of word length in Estonian proverbs, 
this article is part of a more comprehensive analysis of regularities 
characterizing their linguistic organization. Based on empirical 
data provided and published by Arvo Krikmann in his 1967 study 
Keelestatistikat Eesti vanasõnadest (Linguostatistics of Estonian 
proverbs), an attempt is made to arrive at generalizing conclusions by 
discussing theoretical models for tendencies emerging from Krikmann’s 
data. In detail, models of word length frequencies, as well as models 
for the relationship between word length and sentence length, and for 
the relationship between word length and position within a proverbial 
sentence are discussed.

Keywords: frequencies, proverb, sentence length, sequences, word 
length

Introduction

Over the years, it has become a truism to say that the proverb is the 
property of the folk. And it is also commonplace to state that, although 
we do have the discipline of paremiology, the proverb may be (and has 
been) studied from many kinds of scholarly discipline, starting from 
folkloristics, through sociology, to pedagogics, and many others, each 
of them having a specific perspective and asking different questions. 
As a matter of fact, with the proverb being part of verbal folklore, the 
discipline of linguistics has also been traditionally concerned; however, 
as in linguistics in general, linguistic studies of the proverb tend to be 
characterized by symptomatic, rather than systematic, approaches, 
focusing either on isolated phenomena or specifically selected (‘de-
monstrative’) material.
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Systematic approaches, searching for fundamental regularities 
of the linguistic organization of proverbs, are quite uncommon and 
represent a scientific deficit. In this respect, Arvo Krikmann’s study 
Keelestatistikat Eesti vanasõnadest (Linguostatistics of Estonian 
Proverbs; 1967) is a remarkable exception: it is one of the earliest 
and, in fact, one of the few quantitative studies of proverbs in general. 
Unfortunately, this study has, except for a short abstract in Russian 
and a short summarizing communication in German by Pentti Leino 
(1968), never been translated from Estonian1. This seems to be the 
reason why it has remained almost unknown to the international 
academic world, although, at the time of its publication, it was much 
ahead of its time. Because of its systematic approach, it is still today 
appropriate to serve as a source of inspiration and as a starting point, 
and also for comparative studies that attempt to achieve regularities 
in the linguistic organization of proverbs.

The present contribution intends to recall the cornerstones of those 
achievements, made some decades ago. Moreover, attempts shall be 
made to re-analyze some major findings from a contemporary point 
of view, based on insights from the field of quantitative linguistics 
achieved in the last decades, thus paving the way to draw generaliza-
tions from the results obtained.

Krikmann based his analyses primarily on Erna Normann’s collec-
tion Valimik eesti vanasõnu (A Selection of Estonian Proverbs; 1955), 
which contains 3,576 items from the end of the 19th and early 20th 
centuries. On the basis of this proverbial material, he concentrated 
on sentence and word length in Estonian proverbs by asking the fol-
lowing four questions:

a.	 Is there a regularity of sentence length frequencies in proverbs, 
i.e., do proverbs of a given length occur with arbitrary (or 
random) frequency, or is there a specific regularity to these 
frequencies?

b.	 Is there a regularity of word length frequencies in the proverbs, 
i.e., do words of a given length occur arbitrarily, or is there a 
specific regularity to these frequencies?

c.	 Is there a specific relationship between sentence length and 
word length in proverbs?

d.	 Are there positional regularities of word length in proverbs, i.e., 
are there specific regularities in the sequence of words of given 
length that may go along with specific rhythmic regularities?

1 The author of this contribution does not want to give rise to the false impression that 
he sufficiently understands Kriq’s original Estonian text. Rather, Kriq was so kind as to 
translate the gist of his study into English in a letter from November 26, 1999. At that 
time, there had been contacts between us two already for more than 15 years, although 
we were to meet personally for the first time only in August 2008.
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As has been pointed out at the beginning, the present contribution will 
concentrate on word length, that is, on the last three points mentioned 
above.

Word length

As is well known from the field of quantitative linguistics today, word 
length is not an isolated category within a linguistic system, but closely 
interrelated to other properties of the word, as well as of other linguis-
tic units, levels, and structures. In addition, are the frequencies and 
manners in which words of a given length occur in linguistic material 
not chaotic, but rather do they follow clearly defined, law-like regulari-
ties? Most of these regularities were not yet known in the 1960s, when 
most approaches were of merely empirical orientation and emerged as 
ad-hoc solutions to ‘local’ problems rather than against the background 
of a comprehensive theory.

When measuring the length of linguistic phenomena it is necessary 
to define both the unit to be measured and the measuring unit. Krik-
mann’s approach corresponds to standards in quantitative linguistics 
that are still common today, though not identical across languages: a 
word is defined as an orthographic unit, and word length is measured 
by the number of syllables per word.2

Under these conditions, the word length data in Table 1 are obtained 
for Normann’s proverbs, x denoting a given word length class, fx the 
corresponding frequencies of occurrence.

Table 1. Word length frequencies.

x fx

1 6,648

2 10,573

3 2,730

4 920

5 149

6 16

7 2

2 In the tradition of Walter Anderson (1935), compounds are counted as one word in 
Krikmann’s study.
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The frequencies are graphically illustrated in form of a bar chart in 
Figure 1.
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Figure 1. Word length frequencies.

From these data, descriptive statistics can be derived to character-
ize the frequency distribution. Such descriptive measures would be, 
among others, mean value, variance or standard deviation, skewness, 
kurtosis, entropy, repeat rate, or many others. In our context, we do 
not need most of them; let it therefore suffice to say that on the basis of 
our sample size of N = 21,038 words, a mean word length of 𝑥̅ = 1.9260 
syllables per word is obtained, with a standard deviation of s = 0.83.

The question of whether there is a regularity in word length fre-
quency distribution goes beyond descriptive statistics, since in this case 
we are concerned with looking for a model by which the frequencies 
can be described, and which may serve as the basis for comparisons 
with other frequency distributions. In finding such a model, one may 
in principle choose between a continuous and a discrete approach, 
the first usually represented by continuous functions, the second by 
discrete probability distributions. Since in our case, we are concerned 
with discrete units of x = 1, 2, 3, etc. syllables per word, it is reasonable 
to search for a discrete model.

Such models do not, of course, fall from the sky, and they are not 
God-given truths. Rather, they result from some generating process. 
In contemporary quantitative linguistics, it has become common to 
understand the frequencies of a given distribution to be mutually de-
pendent; in detail, the frequency of a given class xi is seen in relation to 
its preceding class xi-1. In other words, the frequency of three-syllable 
words, for example, is not independent of the number of two-syllable 
words, and the number of two-syllable words is related to the number 
of one-syllable words. Mathematically, this is expressed in terms of 
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a function g(x), where the probability Px of a given class is related to 
that of the preceding class Px-1:

(1)

Depending on the form of function g(x), different frequency models and, 
as a result, different frequencies, are obtained. Setting, for example, 
g(x) = a/x we obtain the difference equation

(2)

which results in the well-known Poisson distribution:

(3) x = 0,1,2, …

As can be seen, the Poisson distribution has one parameter (a), and 
depending on the parameter value of a, the frequencies may differ, 
although we are still concerned with one and the same model. This 
parameter value thus needs to be estimated, to fit the model to the 
observed data, and then to test the how good the fit is by way of a sta-
tistical test. As a result of this test, the model can either be retained 
if the differences are statistically random, or it must be rejected if the 
differences are statistically significant.

Thus, in his approach, Krikmann was not satisfied by providing 
empirical data and descriptive statistics, as his aim was to find a theo-
retical (probabilistic) model for the observed frequencies. Moreover, he 
was thus fully in line with quantitative research of his time when he 
attempted to fit the 1-parameter Poisson distribution to the observed 
data; since there are no 0-syllable words in Estonian (i.e., minimal 
word length is x = 1, so that f0 = 0), he used the Poisson distribution 
in its 1-shifted form, which at that time was widely known as ‘Fucks 
distribution’.3

(3a) x = 1,2,3, …

3 In fact, the Fucks distribution is a more complex model, representing a generalization 
of the Poisson distribution with specific weights (cf. Antić et al. 2005); details can be 
ignored in this context, however.
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There are many different methods for parameter estimation: whereas 
in former times, estimation methods were applied which were derived 
from theoretical considerations, today specialized computer programs 
are (additionally) available which contain specific algorithms for itera-
tive procedures. In our case, iterative procedures provide the same 
parameter value for 𝑎 as estimating it by the distribution’s mean, as 
is possible in the case of the Poisson distribution – i.e., 𝑎 = 𝑥̅ = 1.9260. 
As a result, the theoretical values represented in Table 2 are obtained.

Table 2. Empirical and theoretical word length frequencies (Poisson 
distribution).

x fx Npx

1 6,648 8,333.96

2 10,573 7,717.18

3 2,730 3,573.02

4 920 1,102.86

5 149 255.31

6 16 47.28

7 2 7.30

Figure 2 offers a graphical comparison of both observed (fx) and theo-
retical (Npx) values.
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Figure 2. Empirical and theoretical word length frequencies (Poisson 
distribution).
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As can be seen immediately, the theoretical frequencies do not appear 
to correspond to the observed ones to a satisfying degree. In order to 
objectivize this impression, statistical goodness-of-fit tests are usually 
run today, which was less common at that time. Today, it would be 
usual to apply the well-known chi square test for this purpose. From 
a practical perspective, this test has, however, a major disadvantage: 
the chi square value linearly increases with an increase in sample size; 
however, in the case under study here, as in linguistics in general, 
we are used to have rather large samples, so differences between 
observed and theoretical frequencies tend to become significant sooner. 
In order to minimize this problem, it has become common to use the 
standardized discrepancy coefficient C = X²/N, with a value of C < 0.02 
being interpreted as a good, of C < 0.01 as a very good fit.

In the case of the (1-shifted) Poisson distribution we obtain a value 
of C = 0.08 for the data presented here, which is indeed far from 
satisfactory. As a consequence, the Poisson model must be rejected 
as an inadequate model for the word length frequency distribution in 
the chosen proverbs.

However, the question of modelling word length frequencies 
has been a major topic in quantitative linguistics in recent years 
(cf. Grotjahn & Altmann 1993; Wimmer et al. 1994; Grzybek 2006; 
Grzybek 2014). In this context it has been shown that there is not, 
as has previously been assumed, one common (‘universal’) model for 
word length frequencies from different languages; rather, there is a 
general generating mechanism (cf. Wimmer & Altmann 2005; 2006) 
from which various models can be derived, depending on the language 
analyzed, and allowing for further modifications or specifications, due 
to particular boundary conditions (i.e., factors such as language, text 
type, and others).

This discussion needs not be presented here in detail. Suffice it to 
say that for the frequency distribution of word length in Estonian, a 
generalization of the Poisson distribution has been suggested (Bar-
tens & Best) to be a good model, specifically the 2-parameter (a, b) 
hyper-Poisson distribution (cf. Wimmer & Altmann 1999: 281f.) in its 
1-shifted form (4):4

(4) x = 0, 1, 2, …

4 In (4), 1F1 is the confluent hypergeometric function, and b(x-1) denotes the ascending 
factorial function b(b+1)(b+2)…(b+x-2).
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Applying this model5 to the data collected, it turns out that it indeed 
yields more appropriate results, with a satisfying discrepancy coeffi-
cient value of C = 0.0152 (a = 0.48, b = 0.33). We may assume, therefore, 
that the organization of word length in our proverbs is not random or 
arbitrary, but follows specific regularities, which seems to be in line 
with findings for other Estonian texts.

In an earlier re-analysis of the Estonian proverb data (cf. Grzybek 
2000), another model was suggested, providing even better results. 
In this case we are concerned with the 3-parameter hyper-Pascal 
(k, m, q) distribution (cf. Wimmer & Altmann 1999: 279ff.), again in 
its 1-shifted form:

(5) x = 1, 2, 3, …

Having one parameter more than the hyper-Poisson distribution, the 
hyper-Pascal model indeed provides a much better result, with C = 
0.0062 for parameter values k = 0.0872, m = 0.0159, and q = 0.2674.

As further analyses show, however, one should take into account 
yet another 2-parameter model, which yields similarly good results in 
case of our proverbs; we are concerned here with a generalization of 
the geometric distribution

(6a)
x = 0, 1, 2, …

q = 1–p

in its 1-shifted form

(6b) x = 1, 2, 3, …
q = 1–p

namely, the Shenton-Skees geometric distribution (cf. Wimmer & 
Altmann 1999: 593), which is given as

(7)
x = 1, 2, 3, …

q = 1–p

5 In their analysis of 50 Estonian texts, Bartens & Best (1996) have also tested a second 
model, the negative binomial distribution, which, according to their findings, was less 
appropriate.
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With parameter values p = 0.85 and a = 3.59, this model yields an excel-
lent value of C = 0.0062. Table 3 represents the corresponding results.

Table 3. Empirical and theoretical word length frequencies (Shenton-Skees 
geometric distribution).

x fx Npx

1 6,648 6,519.03

2 10,573 10,628.39

3 2,730 3,048.85

4 920 676.57

5 149 134.53

6 16 25.15

7 2 5.48

Both empirical and theoretical frequencies are illustrated in Figure 3.
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Figure 3. Empirical and theoretical word length frequencies (Shenton-Skees 
geometric distribution).

It goes without saying that when searching for an adequate model 
one would, or should, never favour one that (only) empirically fits, but 
favour one that also can be derived from theoretical ruminations: a 
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superior ‘local’ solution covering only individual data should not have 
an advantage over a general and theoretically justified model.6

In this context, one should not forget that the linguistic organization 
of proverbs differs from that of ordinary running texts: for example, in 
proverbs, there is no supra-sentential level as in coherent discourse, 
and all kinds of connector are absent. It may therefore well be possible 
that the different organization of word length in proverbs asks for a 
different model as compared to “ordinary” texts (in the strict sense of 
this word’s meaning); however, in this case, the differences should also 
be explained in terms of the model’s changes.7

In any case, in order to arrive at reliable results as a basis for 
further conclusions, the present findings suggest that word length 
frequencies in Estonian should systematically be re-analyzed; in this 
context, not only the hyper-Poisson, but also the Shenton-Skees geo-
metric distribution should be tested for appropriateness, not only on 
a broader proverbial basis, but also on other kinds of running texts.8

With this in mind, we can next turn to the second issue raised in 
Krikmann’s study, the relationship between a proverb’s length and 
word length.

6 In this respect, it should be mentioned that among the Estonian tests carried out by 
Bartens & Best (see above) there were not only poetic texts, usually characterized by a 
specific lexical organization, but also  extremely short texts (for example, with not more 
than 84 words composed of only 1, 2 or 3 syllables). Moreover, even for the relatively 
longer texts, in most cases some classes had to be pooled to arrive at results for the 
hyper-Poisson distribution that fitted well. The longest text, with 1,609 words, a short 
story called “Elsa Hermann” from the Estonian writer Mari Saat (from Õun valguses 
ja varjus (The apple in light and shadow; 1985), consisted of 8 length classes, although 
here too the last four had to be pooled. Additionally, a re-analysis shows that in this case 
the Shenton-Skees geometric distribution turns out to be an excellent model (C< 0.0048) 
without any pooling procedures. These results clearly ask for a more comprehensive and 
systematic analysis of word length in Estonian, as suggested by the authors themselves, 
and as corroborated by my findings.
7 Theoretically, the hyper-Poisson model converges with the geometric distribution for 
a → ∞, b → ∞, a/b → q; furthermore, as can be seen above, the Shenton-Skees geometric 
distribution is but a 1-modified geometric distribution; however, without further analyses 
on broader data, any reflection in this direction is but speculation.
8 It should not go unmentioned that for our proverbs, the Shenton-Skees distribution is 
the more appropriate model for word length frequencies under two specific test condi-
tions: first, if the word length frequency distribution is calculated separately for each 
sentence (i.e., proverb) length, and second, for individual word positions within the 
proverbial texts (i.e., only for words in the first, second, third, etc. positions) – for both 
cases, the Shenton-Skees geometric model outranges both the hyper-Poisson and the 
hyper-Pascal distribution.
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Proverb length ↔ word length

Given that word length frequencies are regularly organized, and that 
there is a theoretical model to describe word length frequencies, the 
question of how word length is organized in the sequential order of 
proverbs quite naturally arises. In this respect, Krikmann’s obser-
vation that again there is some regularity is of crucial importance; 
specifically, Krikmann observed that an increase of proverb length 
corresponds with a decrease in word length (1967: 138). Table 4 offers 
the corresponding data.

Table 4. Mean word length for separate proverb (sentence) lengths.

Proverb Length

T3 T4 T5 T6 T7 T8 T9 T10

𝒙̅
(Word 
length)

2.2652 1.9939 1.9830 1.9554 1.9642 1.8434 1.8507 1.8217

Today we know that such “vertical” or “hierarchical” relationships 
between units from different (neighbouring) linguistic levels are indeed 
systematically organized in language. In this context, when searching 
for a model of this tendency, the well-known Menzerath-Altmann law is 
of primary relevance: generalizing previous findings by Paul Menzerath 
(1928) on the relationship between word length and syllable length, the 
formulation of this law goes back to German scholar Gabriel Altmann 
(1980), who generally claimed a constituent’s length would decrease 
with an increase in the corresponding construct (for example, the longer 
a word, the shorter the syllables constituting this word). It should be 
emphasized that this tendency concerns direct relations (in the classical 
structuralist paradigm) only, i.e., the relationship of a construct to 
its immediate constituents; the relationship between entities from 
indirectly related levels (for example, between sentences and words, 
which leapfrogs the intermediate level of sub-sentential constructs like 
clauses or phrases) is expected to show different tendencies.

In the framework of the Menzerath-Altmann law, such relation-
ships have frequently been modelled with the simple 2-parameter 
potency function

(8)                   ,ay K x= ⋅



132

Peter Grzybek

where y represents the construct as the dependent variable, x the con-
stituent as the independent variable, K the integration constant, and 
b a parameter determining the steepness of the decrease (for a < 0). 
This function implies the assumption that the relative change rate 
is characterized by an inverse proportionality, corresponding to the 
underlying differential equation

(8a)                .

Function (8) is but a special case of the more complex Menzerathian 
function

(9)                            ,

based on the assumption that the simple proportionality function 
(8a) is not sufficient for more complex cases that ask for an additional 
constant to express additional monotonous decreases coming into play 
(for a < 0):

(9a)                      .

As can be seen, (8) and (8a) can be derived from the above functions 
(9) or (9a) respectively, for b = 0. More recently, both functions9 have 
analogically been derived from the even more complex function

(10)                                      ,

which goes back to the unified derivation of linguistic laws developed 
by Wimmer and Altmann (2005, 2006). Quite obviously, from (10) and 
its corresponding relative change rate (10a)

(10a)                                ,

9 In the original (1980) version of the Menzerath-Altmann law a third function, which is 
not relevant in our context, was included, namely, the exponential function bxy K e= ⋅  , 
which is obtained from (9) for a = 0.

'y a
y x

=

a bxy K x e= ⋅ ⋅

2

'y a cb
y x x

= + +

/a bx c xy K x e e−= ⋅ ⋅ ⋅

'y ab
y x

= +
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on the differential equations (8a) and (9a), can be derived. In analyses 
one would of course always tend to choose that function which has 
fewer parameters to be estimated (usually by way of iterative pro-
cesses) and, more importantly, to be interpreted. With this in mind, 
it turns out as a result that in the case of the proverbs examined, the 
two-parameter function

(11)                        ,

which is obtained from (8) for a = 0 and b = 0, yields a good fit: with 
parameter values K = 1.68 and c = –0.84, the determination coefficient 
is R² = 0.90. Figure 4 shows the empirical data points and the regres-
sion curve obtained from the function described.
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Figure 4. Dependence of word length on proverb (sentence) length.

This finding corroborates the assumption that there is a regular 
relationship between word length and proverb length. What is striking, 
however, is the tendency of this relationship, i.e., a decrease in word 
length with an increase in proverb length. Given the assumption that 
there is a syntactically relevant intermediate level, i.e. sub-sentential 
construct-like clauses, phrases, or partial sentences, a quantitative 

/c xy K e−= ⋅
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linguistic approach would tend to regard these as immediate 
constituents of the sentence, and would then predict shorter sub-
sentential units for longer sentences. A length decrease of the sub-
sentential unit, however, should go along with an increase in word 
length. If both assumptions are taken together, one would expect 
an increase in word length with an increase in sentence (proverb) 
length. In fact, for running texts, such tendencies have recently been 
demonstrated, although not for Estonian, and with modifications for 
very short sentences without hypotaxis.

Again, we do not have sufficient data, at least not for Estonian, to 
interpret the results obtained: on the one hand, we may be concerned 
with proverbial specifics, eventually syntactic characteristics of the 
proverb; on the other hand, we may be concerned with the specifics 
of Estonian syntax in general. Unfortunately, we do not have any 
Estonian data about the relationship between word length and either 
sub-sentential or sentential length, and the question as to an interpre-
tation of our findings must remain open until such data are available.

Positional aspects of word length

The next issue raised in Krikmann’s study, and the last to be dealt with 
here, concerns the question of how far word length is characterized by 
particular regularities with regard to the position within a running 
proverbial text. Since in Normann’s material we have a maximal length 
of xmax=10, ten positions (Pos1…Pos10) can be distinguished, and aver-
age word length can be calculated for each position. Based on the raw 
data given in Krikmann’s text, the corresponding averages for each 
position can be calculated (cf. Table 5):

Table 5. Mean word length for individual within-proverb positions.

Within-Proverb Position

Pos1 Pos2 Pos3 Pos4 Pos5 Pos6 Pos7 Pos8 Pos9 Pos10

𝒙̅
(Word 
length)

1.8852 1.7980 1.9765 1.9608 1.8943 1.9756 2.0373 1.9704 1.9771 2.1714

As can be seen on closer inspection, the mean values display some 
wave-like form, with minima at positions 2, 5, 8, and maxima at posi-
tions 3, 7, 10. Interestingly enough, such a tendency can adequately 
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be modelled in terms of an ordinary Fourier series, which decomposes 
periodic phenomena into the sum of a (possibly infinite) set of simple 
oscillating functions, namely sines and cosines. In our case, the series

(12)

yields an almost perfect fit (with R² = 0.99). This can also be seen 
from Figure 5, which shows the observed data points as well as the 
regression curve based on equation (9). This result proves that quite 
obviously there is some regular organization in the sequential order 
of word length in the proverbs examined here – but although such 
a model would be mathematically convincing, it would hardly allow 
for any simple linguistic or paroemiological explanation, as far as its 
parameter values are concerned.10
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Figure 5. Fourier series for mean word length, given separately for 
individual within-proverb positions.

With this in mind, it might therefore be more promising to expand a line 
suggested by Krikmann, and additionally take into account sentence 
length again: in the two approaches discussed above, we have analyzed 

10 There is no need to mention the parameter values here. Suffice it to say, that 
the situation is not essentially different, if (12) is reduced by two parameters, i.e., 

( ) ( ) ( ) ( )sin cos sinf x k a bx c dx e x= + ⋅ + ⋅ + ⋅ , the fitting result in this case still being very good 
(R² = 0.97).

( ) ( ) ( ) ( ) ( )sin cos sin cosf x k a bx c dx e fx g hx= + ⋅ + ⋅ + ⋅ + ⋅
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a)	 the dependence of word length on sentence length, paying no 
attention to the specific within-sentence position, and

b)	 the dependence of word length on within-proverb position, 
ignoring specific proverb length.

For both questions, we can find a model suitable to cover the underly-
ing systematic mechanism. Thus, what is still lacking is a combina-
tion of both approaches, i.e., an analysis of average word length for 
each individual position within a proverb sentence, but separately for 
each individual sentence length. There is no need to reproduce the 
corresponding data in detail here, which can be found in Krikmann’s 
(1967: 133ff) text, and which are graphically presented in Figure 6 in 
the same form as in that text:

Position (sentence-length specific)

3 4 5 6 7 8 9 10
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1,6

1,8

2,0

2,2

2,4

Figure 6. Mean word length for individual within-proverb positions, given 
separately for individual proverb (sentence) lengths.

Analyzing the given data situation, Krikmann (1967: 139) arrived at the 
conclusion11 that there are essentially two different kinds of structure: 
the first type is represented by those proverbs with a sentence length 

11 A number of further observations made by Krikmann can be neglected here.
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from three to five words (T3–T5, in Krikmann’s terminology adopted 
here and for the remainder of this chapter), the second type by those 
from six to 10 words (T6–T10); accordingly, the first type is unipartite, 
the second is bipartite.

The shorter unipartite proverbs are, as regards the position-
dependent order of word length, characterized by an initial decrease, 
followed by an increase; more specifically, the minimal word length in 
all of these cases – i.e. for T3, T4, and T5 – is the second position (Pos2), 
the maximum is the last position (i.e., Pos3, Pos4, or Pos5, respectively).

As compared to this, the longer bipartite proverbs (T6–T10) are 
characterized by two periods, or cycles: the first of these two cycles 
behaves principally in the same way as the proverbs from T3–T5; as to 
the second cycle, proverbs of T7, T9, and T10 also behave as the first cycle, 
whereas the second cycles of proverbs with T6 and T8 are characterized 
by a monotonous increase.

Starting from Krikmann’s observations, and attempting to expand 
on them, it is tempting to see if the observed tendencies and regularities 
follow a common tendency and can be grasped by a functional model. 
Searching for such a model, it seems reasonable to ‘split’ the curves 
for the longer bipartite proverbs and consider them to be composed of 
two separate parts; as a consequence, we are concerned with 13 curves 
(the curves for T≥6 being composed of an a and a b part). Moreover, 
a relatively complex model is to be expected, if this model is to cover 
all curves, since despite the overall similar tendency, the degrees of 
decrease and increase differ for all of them.

Thus, assuming that the characteristic decreasing →  increasing 
tendencies are the result of specific underlying processes, we can as-
sume that this tendency, which the exception of the monotonously 
increasing curves at T6 and T8, is essentially ruled by (at least) two 
processes that are antagonistic by nature. This leads to the assumption 
that the relative rate of change is composed of a constant (a), on the 
one hand, and a sum (or, in case of c < 0, a difference) of differently 
weighted proportional processes, on the other; if we tentatively set 
these as b/x and d/x², we obtain the differential equation (9a) already 
mentioned above

(10a)                             ,

resulting in function (10) above.

2

'y a cb
y x x

= + +
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Thus, tentatively supposing that the observed tendencies can in 
principle be grasped by function (10), it seems to be justified to ad-
ditionally expect that at least for the shorter cycles, minimally one of 
the parameter values converges to 0 or 1, resulting in a simpler model. 
It goes without saying that, if the assumption holds, this needs not be 
one and the same parameter for all curves. In any case, a simplified 
model of (10) will inevitably be needed for the curves of T3, T6a, T6b and 
T7a, with only three words each, since otherwise the model would have 
more parameters than data points.

It seems reasonable, therefore, to start the analysis with the cycles 
composed of minimally four words. Table 6 presents the fitting results, 
i.e. the parameter values and the corresponding R² values, which in 
the next step can serve as some kind of benchmark for some simplified 
model.

Table 6. Results of fitting function (10).

  K a b c  

    a0 a1 a2  R²

T3  ---  ---  ---  ---  ---

T4 0.3159 -0.2650 1.7708 -2.1049 >0.9999

T5 0.8016 0.0391 0.4035 -0.8744 0.9971

T6a  ---  ---  ---  ---  ---

T6b  ---  ---  ---  ---  ---

T7a  ---  ---  ---  ---  ---

T7b 0.7720 0.1781 0.1548 -0.7246 >0.9999

T8a 1.4021 0.1445 -0.1724 -0.0766 >0.9999

T8b 1.1934 0.0659 0.1732 -0.2608 >0.9999

T9a 0.0393 -0.9206 4.6157 -4.7446 >0.9999

T9b 1.3042 0.1225 -0.1053 -0.1998 0.8926

T10a 0.6878 -0.1525 0.9765 -1.0754 0.9888

T10b 9.8301 0.6655 -2.7136 2.3734 0.9853

As a first glance at Table 6 shows, the fitting results are very good in 
all cases. As can also be seen, in almost all cases (with the exception 
of T10b) at least one of the parameters (a, b, c) seems to converge to 
0 or 1, thus indeed resulting in a simplified model; however, there 
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seems to be no common tendency as to the concrete parameter for 
the individual cycles; rather, it seems we are concerned with various 
kinds of ‘local’ modifications (or simplifications) of the general model, 
and it is a matter of empirical approach which of these simpler model 
adequately characterizes the given cycle.

Faced with the task of identifying suitable modifications, with 
regard to the shorter cycles, on the one hand, and the desire to find 
a simplified model (with fewer parameters) for the longer ones, on 
the other, the procedure should not, of course, result in a significant 
decrease of the model fit; therefore I set a benchmark of R² ≥ 0.99 for 
all individual cycles (and R² = 0.89 for T9b, respectively).

The following tables and figures show the corresponding results. It 
turns out that in all cases, we are concerned either with the combina-
tion of two exponential functions, or of an exponential and a power 
function. The tables contain for each cycle the adequate function, along 
with the empirical mean values for word length at a given position, the 
parameter values, the discrepancy coefficient C, and the accompanying 
illustration, with the filled circles representing the observed values, 
and the function representing the theoretical curve.
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Conclusions

As the above analyses show, the linguistic organization of Estonian 
proverbs is far from being random: rather, it is characterized by regular 
mechanisms. In the present contribution, focusing on word length only, 
it can be shown that these regularities concern not only word length 
frequency organization, but also position-dependent specifics, as well 
as dependencies between sentence length and word length. Not only 
can all of the resulting tendencies of the underlying organizational 
processes be stochastically modelled, moreover, this is possible in the 
general framework of well-known linguistic theories. It remains open 
to corroborate these results on a larger database and to compare them 
with regard to proverbs from more languages, on the one hand, and to 
the general linguistic situation in Estonian, on the other.
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